DataFrames: Reading in messy data
Contents
Live Notebook
You can run this notebook in a live session or view it on Github.
DataFrames: Reading in messy data¶
In the 01-data-access example we show how Dask Dataframes can read and store data in many of the same formats as Pandas dataframes. One key difference, when using Dask Dataframes is that instead of opening a single file with a function like pandas.read_csv, we typically open many files at once with dask.dataframe.read_csv. This enables us to treat a collection of files as a single dataset. Most of the time this works really well. But real data is messy and in this notebook we will explore a more advanced technique to bring messy datasets into a dask dataframe.
Start Dask Client for Dashboard¶
Starting the Dask Client is optional. It will provide a dashboard which is useful to gain insight on the computation.
The link to the dashboard will become visible when you create the client below. We recommend having it open on one side of your screen while using your notebook on the other side. This can take some effort to arrange your windows, but seeing them both at the same is very useful when learning.
[1]:
from dask.distributed import Client
client = Client(n_workers=1, threads_per_worker=4, processes=True, memory_limit='2GB')
client
[1]:
Client
Client-3a3f7d3e-0de1-11ed-a27f-000d3a8f7959
Connection method: Cluster object | Cluster type: distributed.LocalCluster |
Dashboard: http://127.0.0.1:8787/status |
Cluster Info
LocalCluster
df920051
Dashboard: http://127.0.0.1:8787/status | Workers: 1 |
Total threads: 4 | Total memory: 1.86 GiB |
Status: running | Using processes: True |
Scheduler Info
Scheduler
Scheduler-0c7591d1-fd03-435a-bfcf-c75404389145
Comm: tcp://127.0.0.1:43981 | Workers: 1 |
Dashboard: http://127.0.0.1:8787/status | Total threads: 4 |
Started: Just now | Total memory: 1.86 GiB |
Workers
Worker: 0
Comm: tcp://127.0.0.1:45589 | Total threads: 4 |
Dashboard: http://127.0.0.1:37755/status | Memory: 1.86 GiB |
Nanny: tcp://127.0.0.1:44473 | |
Local directory: /home/runner/work/dask-examples/dask-examples/dataframes/dask-worker-space/worker-pz_o1b0r |
Create artificial dataset¶
First we create an artificial dataset and write it to many CSV files.
You don’t need to understand this section, we’re just creating a dataset for the rest of the notebook.
[2]:
import dask
df = dask.datasets.timeseries()
df
[2]:
id | name | x | y | |
---|---|---|---|---|
npartitions=30 | ||||
2000-01-01 | int64 | object | float64 | float64 |
2000-01-02 | ... | ... | ... | ... |
... | ... | ... | ... | ... |
2000-01-30 | ... | ... | ... | ... |
2000-01-31 | ... | ... | ... | ... |
[3]:
import os
import datetime
if not os.path.exists('data'):
os.mkdir('data')
def name(i):
""" Provide date for filename given index
Examples
--------
>>> name(0)
'2000-01-01'
>>> name(10)
'2000-01-11'
"""
return str(datetime.date(2000, 1, 1) + i * datetime.timedelta(days=1))
df.to_csv('data/*.csv', name_function=name, index=False);
Read CSV files¶
We now have many CSV files in our data directory, one for each day in the month of January 2000. Each CSV file holds timeseries data for that day. We can read all of them as one logical dataframe using the dd.read_csv
function with a glob string.
[4]:
!ls data/*.csv | head
data/2000-01-01.csv
data/2000-01-02.csv
data/2000-01-03.csv
data/2000-01-04.csv
data/2000-01-05.csv
data/2000-01-06.csv
data/2000-01-07.csv
data/2000-01-08.csv
data/2000-01-09.csv
data/2000-01-10.csv
[5]:
import dask.dataframe as dd
df = dd.read_csv('data/2000-*-*.csv')
df
[5]:
id | name | x | y | |
---|---|---|---|---|
npartitions=30 | ||||
int64 | object | float64 | float64 | |
... | ... | ... | ... | |
... | ... | ... | ... | ... |
... | ... | ... | ... | |
... | ... | ... | ... |
[6]:
df.head()
[6]:
id | name | x | y | |
---|---|---|---|---|
0 | 988 | Norbert | -0.742721 | -0.277954 |
1 | 1025 | Bob | 0.603313 | -0.161292 |
2 | 992 | Alice | -0.049408 | 0.573142 |
3 | 1029 | Bob | -0.122566 | 0.533852 |
4 | 1032 | Patricia | 0.476066 | -0.006417 |
Let’s look at some statistics on the data
[7]:
df.describe().compute()
[7]:
id | x | y | |
---|---|---|---|
count | 2.592000e+06 | 2.592000e+06 | 2.592000e+06 |
mean | 9.999909e+02 | -1.752288e-04 | 1.272128e-04 |
std | 3.163993e+01 | 5.772766e-01 | 5.773655e-01 |
min | 8.370000e+02 | -9.999999e-01 | -9.999995e-01 |
25% | 9.790000e+02 | -4.924166e-01 | -4.938494e-01 |
50% | 1.000000e+03 | 9.977439e-03 | 4.362202e-03 |
75% | 1.022000e+03 | 5.070134e-01 | 5.083363e-01 |
max | 1.160000e+03 | 9.999979e-01 | 9.999995e-01 |
Make some messy data¶
Now this works great, and in most cases dd.read_csv or dd.read_parquet etc are the preferred way to read in large collections of data files into a dask dataframe, but real world data is often very messy and some files may be broken or badly formatted. To simulate this we are going to create some fake messy data by tweaking our example csv files. For the file data/2000-01-05.csv
we will replace with no data and for the file data/2000-01-07.csv
we will remove the y
column
[8]:
# corrupt the data in data/2000-01-05.csv
with open('data/2000-01-05.csv', 'w') as f:
f.write('')
[9]:
# remove y column from data/2000-01-07.csv
import pandas as pd
df = pd.read_csv('data/2000-01-07.csv')
del df['y']
df.to_csv('data/2000-01-07.csv', index=False)
[10]:
!head data/2000-01-05.csv
[11]:
!head data/2000-01-07.csv
id,name,x
1032,Edith,0.341158963292153
1025,Yvonne,-0.0596561961788608
996,Hannah,-0.4598038238105364
1015,Norbert,-0.6893967021653444
976,Hannah,0.4339578272105588
1002,Dan,0.3519233500902228
917,Xavier,-0.928241343897473
1036,Hannah,-0.5115504865546654
972,Oliver,-0.3808144336718926
Reading the messy data¶
Let’s try reading in the collection of files again
[12]:
df = dd.read_csv('data/2000-*-*.csv')
[13]:
df.head()
[13]:
id | name | x | y | |
---|---|---|---|---|
0 | 988 | Norbert | -0.742721 | -0.277954 |
1 | 1025 | Bob | 0.603313 | -0.161292 |
2 | 992 | Alice | -0.049408 | 0.573142 |
3 | 1029 | Bob | -0.122566 | 0.533852 |
4 | 1032 | Patricia | 0.476066 | -0.006417 |
Ok this looks like it worked, let us calculate the dataset statistics again
[14]:
df.describe().compute()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Input In [14], in <cell line: 1>()
----> 1 df.describe().compute()
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/base.py:292, in DaskMethodsMixin.compute(self, **kwargs)
268 def compute(self, **kwargs):
269 """Compute this dask collection
270
271 This turns a lazy Dask collection into its in-memory equivalent.
(...)
290 dask.base.compute
291 """
--> 292 (result,) = compute(self, traverse=False, **kwargs)
293 return result
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/base.py:575, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs)
572 keys.append(x.__dask_keys__())
573 postcomputes.append(x.__dask_postcompute__())
--> 575 results = schedule(dsk, keys, **kwargs)
576 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/distributed/client.py:3004, in Client.get(self, dsk, keys, workers, allow_other_workers, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)
3002 should_rejoin = False
3003 try:
-> 3004 results = self.gather(packed, asynchronous=asynchronous, direct=direct)
3005 finally:
3006 for f in futures.values():
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/distributed/client.py:2178, in Client.gather(self, futures, errors, direct, asynchronous)
2176 else:
2177 local_worker = None
-> 2178 return self.sync(
2179 self._gather,
2180 futures,
2181 errors=errors,
2182 direct=direct,
2183 local_worker=local_worker,
2184 asynchronous=asynchronous,
2185 )
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/distributed/utils.py:318, in SyncMethodMixin.sync(self, func, asynchronous, callback_timeout, *args, **kwargs)
316 return future
317 else:
--> 318 return sync(
319 self.loop, func, *args, callback_timeout=callback_timeout, **kwargs
320 )
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/distributed/utils.py:385, in sync(loop, func, callback_timeout, *args, **kwargs)
383 if error:
384 typ, exc, tb = error
--> 385 raise exc.with_traceback(tb)
386 else:
387 return result
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/distributed/utils.py:358, in sync.<locals>.f()
356 future = asyncio.wait_for(future, callback_timeout)
357 future = asyncio.ensure_future(future)
--> 358 result = yield future
359 except Exception:
360 error = sys.exc_info()
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/tornado/gen.py:762, in Runner.run(self)
759 exc_info = None
761 try:
--> 762 value = future.result()
763 except Exception:
764 exc_info = sys.exc_info()
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/distributed/client.py:2041, in Client._gather(self, futures, errors, direct, local_worker)
2039 exc = CancelledError(key)
2040 else:
-> 2041 raise exception.with_traceback(traceback)
2042 raise exc
2043 if errors == "skip":
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/optimization.py:990, in __call__()
988 if not len(args) == len(self.inkeys):
989 raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args)))
--> 990 return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/core.py:149, in get()
147 for key in toposort(dsk):
148 task = dsk[key]
--> 149 result = _execute_task(task, cache)
150 cache[key] = result
151 result = _execute_task(out, cache)
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/core.py:119, in _execute_task()
115 func, args = arg[0], arg[1:]
116 # Note: Don't assign the subtask results to a variable. numpy detects
117 # temporaries by their reference count and can execute certain
118 # operations in-place.
--> 119 return func(*(_execute_task(a, cache) for a in args))
120 elif not ishashable(arg):
121 return arg
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/utils.py:40, in apply()
38 def apply(func, args, kwargs=None):
39 if kwargs:
---> 40 return func(*args, **kwargs)
41 else:
42 return func(*args)
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/dataframe/core.py:6436, in apply_and_enforce()
6434 return meta
6435 if is_dataframe_like(df):
-> 6436 check_matching_columns(meta, df)
6437 c = meta.columns
6438 else:
File /usr/share/miniconda3/envs/dask-examples/lib/python3.9/site-packages/dask/dataframe/utils.py:415, in check_matching_columns()
413 else:
414 extra_info = "Order of columns does not match"
--> 415 raise ValueError(
416 "The columns in the computed data do not match"
417 " the columns in the provided metadata\n"
418 f"{extra_info}"
419 )
ValueError: The columns in the computed data do not match the columns in the provided metadata
Extra: []
Missing: ['y']
So what happened?
When creating a dask dataframe from a collection of files, dd.read_csv samples the first few files in the dataset to determine the datatypes and columns available. Since it has not opened all the files it does not now if some of them are corrupt. Hence, df.head()
works since it is only looking at the first file. df.describe.compute()
fails because of the corrupt data in data/2000-01-05.csv
Building a delayed reader¶
To get around this problem we are going to use a more advanced technique to build our dask dataframe. This method can also be used any time some custom logic is required when reading each file. Essentially, we are going to build a function that uses pandas and some error checking and returns a pandas dataframe. If we find a bad data file we will either find a way to fix/clean the data or we will return and empty pandas dataframe with the same structure as the good data.
[15]:
import numpy as np
import io
def read_data(filename):
# for this to work we need to explicitly set the datatypes of our pandas dataframe
dtypes = {'id': int, 'name': str, 'x': float, 'y': float}
try:
# try reading in the data with pandas
df = pd.read_csv(filename, dtype=dtypes)
except:
# if this fails create an empty pandas dataframe with the same dtypes as the good data
df = pd.read_csv(io.StringIO(''), names=dtypes.keys(), dtype=dtypes)
# for the case with the missing column, add a column of data with NaN's
if 'y' not in df.columns:
df['y'] = np.NaN
return df
Let’s test this function on a good file and the two bad files
[16]:
# test function on a normal file
read_data('data/2000-01-01.csv').head()
[16]:
id | name | x | y | |
---|---|---|---|---|
0 | 988 | Norbert | -0.742721 | -0.277954 |
1 | 1025 | Bob | 0.603313 | -0.161292 |
2 | 992 | Alice | -0.049408 | 0.573142 |
3 | 1029 | Bob | -0.122566 | 0.533852 |
4 | 1032 | Patricia | 0.476066 | -0.006417 |
[17]:
# test function on the empty file
read_data('data/2000-01-05.csv').head()
[17]:
id | name | x | y |
---|
[18]:
# test function on the file missing the y column
read_data('data/2000-01-07.csv').head()
[18]:
id | name | x | y | |
---|---|---|---|---|
0 | 1032 | Edith | 0.341159 | NaN |
1 | 1025 | Yvonne | -0.059656 | NaN |
2 | 996 | Hannah | -0.459804 | NaN |
3 | 1015 | Norbert | -0.689397 | NaN |
4 | 976 | Hannah | 0.433958 | NaN |
Assembling the dask dataframe¶
First we take our read_data
function and convert it to a dask delayed function
[19]:
from dask import delayed
read_data = delayed(read_data)
Let us look at what the function does now
[20]:
df = read_data('data/2000-01-01.csv')
df
[20]:
Delayed('read_data-604fd047-a660-4c67-87ad-60569554e79e')
It creates a delayed object, to actually run read the file we need to run .compute()
[21]:
df.compute()
[21]:
id | name | x | y | |
---|---|---|---|---|
0 | 988 | Norbert | -0.742721 | -0.277954 |
1 | 1025 | Bob | 0.603313 | -0.161292 |
2 | 992 | Alice | -0.049408 | 0.573142 |
3 | 1029 | Bob | -0.122566 | 0.533852 |
4 | 1032 | Patricia | 0.476066 | -0.006417 |
... | ... | ... | ... | ... |
86395 | 927 | Alice | 0.051035 | 0.051330 |
86396 | 968 | George | -0.389181 | 0.096867 |
86397 | 1039 | Alice | 0.396751 | 0.688604 |
86398 | 996 | Patricia | -0.042164 | -0.924152 |
86399 | 956 | Tim | 0.854212 | 0.858070 |
86400 rows × 4 columns
Now let’s build a list of all the available csv files
[22]:
# loop over all the files
from glob import glob
files = glob('data/2000-*-*.csv')
files
[22]:
['data/2000-01-25.csv',
'data/2000-01-20.csv',
'data/2000-01-29.csv',
'data/2000-01-02.csv',
'data/2000-01-19.csv',
'data/2000-01-23.csv',
'data/2000-01-10.csv',
'data/2000-01-21.csv',
'data/2000-01-17.csv',
'data/2000-01-04.csv',
'data/2000-01-27.csv',
'data/2000-01-22.csv',
'data/2000-01-14.csv',
'data/2000-01-11.csv',
'data/2000-01-13.csv',
'data/2000-01-08.csv',
'data/2000-01-09.csv',
'data/2000-01-06.csv',
'data/2000-01-01.csv',
'data/2000-01-07.csv',
'data/2000-01-12.csv',
'data/2000-01-16.csv',
'data/2000-01-26.csv',
'data/2000-01-24.csv',
'data/2000-01-18.csv',
'data/2000-01-15.csv',
'data/2000-01-03.csv',
'data/2000-01-30.csv',
'data/2000-01-28.csv',
'data/2000-01-05.csv']
Now we run the delayed read_data function on each file in the list
[23]:
df = [read_data(file) for file in files]
df
[23]:
[Delayed('read_data-6958e08a-f47f-4da2-9ceb-cb995eab99bf'),
Delayed('read_data-30f33e21-323e-49c0-ae36-a7c6289d8ada'),
Delayed('read_data-2fdfe85e-79e1-417d-af2d-3a577fe15975'),
Delayed('read_data-72b35641-90b5-4518-bbac-fa9c9024c756'),
Delayed('read_data-e3adc855-9df0-4985-87fd-f95e3f2d10b7'),
Delayed('read_data-f070f86c-bff6-448e-abe0-50baaf9282b0'),
Delayed('read_data-f4ed9f6d-c5ae-44aa-ba0e-a2eaf2cd749a'),
Delayed('read_data-2a55c497-9a5a-4474-8dca-fc243ee5a5bf'),
Delayed('read_data-1fb346a5-4a27-4772-ab6b-94419f328ae0'),
Delayed('read_data-72610d5f-2847-4afb-9c86-af08217797d2'),
Delayed('read_data-f3bbcc5b-c2f6-4a5f-8d3e-1d50fb30dc69'),
Delayed('read_data-52b113b8-1692-4ff9-86b4-cb65e066e1c3'),
Delayed('read_data-ff401421-8ccf-4e29-bf70-8b63ed4e8b90'),
Delayed('read_data-ebe81647-e84f-4377-ba1c-26f220aed7e3'),
Delayed('read_data-dabf5c6c-e459-4f89-9a02-4b4a11879708'),
Delayed('read_data-c7b3408b-2cec-41e1-9553-fb9a24a338b0'),
Delayed('read_data-fbd802e1-f886-4035-a285-1d657e1074e5'),
Delayed('read_data-fc2fb366-2ef9-4eaf-bfee-6679420f4080'),
Delayed('read_data-9f4b137b-6dd0-491c-bf55-6cb40a502918'),
Delayed('read_data-3d109e18-3e32-495d-940b-1882b33ab6dd'),
Delayed('read_data-8915acd4-a325-48fd-b147-a0c7a238f0df'),
Delayed('read_data-ec5de8ae-f438-4b65-9214-3dab09f1e05a'),
Delayed('read_data-9b519672-8a00-4c53-a1ff-c1f960272d4c'),
Delayed('read_data-6594c4c0-d33e-4f13-8fcc-ae39a840b3f9'),
Delayed('read_data-80c1be62-beeb-4317-91ba-6363d6f8eee5'),
Delayed('read_data-cf7ac988-9874-4b62-91f8-148c60c670c0'),
Delayed('read_data-2175062e-82b5-4d46-b1c7-31d301e26ba3'),
Delayed('read_data-6a97a8fc-a3df-494e-8870-0ba7b6638444'),
Delayed('read_data-14d8926a-674d-4e17-b603-9f2da75bd25c'),
Delayed('read_data-d6be5de8-1b74-4a12-bc45-7d7f4e7bd190')]
Then we use dask.dataframe.from_delayed. This function creates a Dask DataFrame from a list of delayed objects as long as each delayed object returns a pandas dataframe. The structure of each individual dataframe returned must also be the same.
[24]:
df = dd.from_delayed(df, meta={'id': int, 'name': str, 'x': float, 'y': float})
df
[24]:
id | name | x | y | |
---|---|---|---|---|
npartitions=30 | ||||
int64 | object | float64 | float64 | |
... | ... | ... | ... | |
... | ... | ... | ... | ... |
... | ... | ... | ... | |
... | ... | ... | ... |
Note: we provided the dtypes in the meta
keyword to explicitly tell Dask Dataframe what kind of dataframe to expect. If we did not do this Dask would infer this from the first delayed object which could be slow if it was a large csv file
Now let’s see if this works¶
[25]:
df.head()
[25]:
id | name | x | y | |
---|---|---|---|---|
0 | 976 | Oliver | 0.628767 | 0.765093 |
1 | 1053 | Sarah | -0.047006 | -0.955109 |
2 | 1049 | Quinn | -0.032074 | -0.099608 |
3 | 1005 | Frank | -0.255920 | 0.963524 |
4 | 993 | Ursula | 0.980263 | -0.875488 |
[26]:
df.describe().compute()
[26]:
id | x | y | |
---|---|---|---|
count | 2.505600e+06 | 2.505600e+06 | 2.419200e+06 |
mean | 9.999870e+02 | -1.615087e-04 | 7.238821e-05 |
std | 3.163868e+01 | 5.772576e-01 | 5.774155e-01 |
min | 8.370000e+02 | -9.999999e-01 | -9.999995e-01 |
25% | 9.790000e+02 | -4.924166e-01 | -4.938494e-01 |
50% | 1.000000e+03 | 9.977439e-03 | 4.362202e-03 |
75% | 1.022000e+03 | 5.070134e-01 | 5.083363e-01 |
max | 1.160000e+03 | 9.999979e-01 | 9.999995e-01 |
Success!¶
To recap, in this example, we looked at an approach to create a Dask Dataframe from a collection of many data files. Typically you would use built-in functions like dd.read_csv
or dd.read_parquet
to do this. Sometimes, this is not possible because of messy/corrupted files in your dataset or some custom processing that might need to be done.
In these cases, you can build a Dask DataFrame with the following steps.
Create a regular python function that reads the data, performs any transformations, error checking etc and always returns a Pandas dataframe with the same structure
Convert this read function to a delayed object using the
dask.delayed
functionCall each file in your dataset with the delayed data reader and assemble the output as a list of delayed objects
Used
dd.from_delayed
to covert the list of delayed objects to a Dask Dataframe
This same technique can be used in other situations as well. Another example might be data files that require using a specialized reader, or several transformations before they can be converted to a pandas dataframe.