You can run this notebook in a live session Binder or view it on Github.

Dask Bags

Dask Bag implements operations like map, filter, groupby and aggregations on collections of Python objects. It does this in parallel and in small memory using Python iterators. It is similar to a parallel version of itertools or a Pythonic version of the PySpark RDD.

Dask Bags are often used to do simple preprocessing on log files, JSON records, or other user defined Python objects.

Full API documentation is available here: http://docs.dask.org/en/latest/bag-api.html

Start Dask Client for Dashboard

Starting the Dask Client is optional. It will provide a dashboard which is useful to gain insight on the computation.

The link to the dashboard will become visible when you create the client below. We recommend having it open on one side of your screen while using your notebook on the other side. This can take some effort to arrange your windows, but seeing them both at the same is very useful when learning.

[1]:
from dask.distributed import Client, progress
client = Client(n_workers=4, threads_per_worker=1)
client
/home/travis/miniconda/envs/test/lib/python3.6/site-packages/dask/config.py:168: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
  data = yaml.load(f.read()) or {}
/home/travis/miniconda/envs/test/lib/python3.6/site-packages/distributed/config.py:20: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
  defaults = yaml.load(f)
[1]:

Client

Cluster

  • Workers: 4
  • Cores: 4
  • Memory: 15.69 GB

Create Random Data

We create a random set of record data and store it to disk as many JSON files. This will serve as our data for this notebook.

[2]:
import dask
import json
import os

os.makedirs('data', exist_ok=True)              # Create data/ directory

b = dask.datasets.make_people()                 # Make records of people
b.map(json.dumps).to_textfiles('data/*.json')   # Encode as JSON, write to disk
[2]:
['data/0.json',
 'data/1.json',
 'data/2.json',
 'data/3.json',
 'data/4.json',
 'data/5.json',
 'data/6.json',
 'data/7.json',
 'data/8.json',
 'data/9.json']

Read JSON data

Now that we have some JSON data in a file lets take a look at it with Dask Bag and Python JSON module.

[3]:
!head -n 2 data/0.json
{"age": 31, "name": ["Sylvester", "Sanchez"], "occupation": "Marine Electrician", "telephone": "1-580-118-5788", "address": {"address": "502 Illinois Walk", "city": "Valparaiso"}, "credit-card": {"number": "2523 2299 7032 1385", "expiration-date": "10/17"}}
{"age": 63, "name": ["Becki", "Cain"], "occupation": "Travel Courier", "telephone": "386.638.0209", "address": {"address": "509 Dublin Extension", "city": "Oxnard"}, "credit-card": {"number": "2674 0284 7539 8857", "expiration-date": "03/16"}}
[4]:
import dask.bag as db
import json

b = db.read_text('data/*.json').map(json.loads)
b
[4]:
dask.bag<loads-f..., npartitions=10>
[5]:
b.take(2)
[5]:
({'age': 31,
  'name': ['Sylvester', 'Sanchez'],
  'occupation': 'Marine Electrician',
  'telephone': '1-580-118-5788',
  'address': {'address': '502 Illinois Walk', 'city': 'Valparaiso'},
  'credit-card': {'number': '2523 2299 7032 1385',
   'expiration-date': '10/17'}},
 {'age': 63,
  'name': ['Becki', 'Cain'],
  'occupation': 'Travel Courier',
  'telephone': '386.638.0209',
  'address': {'address': '509 Dublin Extension', 'city': 'Oxnard'},
  'credit-card': {'number': '2674 0284 7539 8857',
   'expiration-date': '03/16'}})

Map, Filter, Aggregate

We can process this data by filtering out only certain records of interest, mapping functions over it to process our data, and aggregating those results to a total value.

[6]:
b.filter(lambda record: record['age'] > 30).take(2)  # Select only people over 30
[6]:
({'age': 31,
  'name': ['Sylvester', 'Sanchez'],
  'occupation': 'Marine Electrician',
  'telephone': '1-580-118-5788',
  'address': {'address': '502 Illinois Walk', 'city': 'Valparaiso'},
  'credit-card': {'number': '2523 2299 7032 1385',
   'expiration-date': '10/17'}},
 {'age': 63,
  'name': ['Becki', 'Cain'],
  'occupation': 'Travel Courier',
  'telephone': '386.638.0209',
  'address': {'address': '509 Dublin Extension', 'city': 'Oxnard'},
  'credit-card': {'number': '2674 0284 7539 8857',
   'expiration-date': '03/16'}})
[7]:
b.map(lambda record: record['occupation']).take(2)  # Select the occupation field
[7]:
('Marine Electrician', 'Travel Courier')
[8]:
b.count().compute()  # Count total number of records
[8]:
10000

Chain computations

It is common to do many of these steps in one pipeline, only calling compute or take at the end.

[9]:
result = (b.filter(lambda record: record['age'] > 30)
           .map(lambda record: record['occupation'])
           .frequencies(sort=True)
           .topk(10, key=1))
result
[9]:
dask.bag<topk-ag..., npartitions=1>

As with all lazy Dask collections, we need to call compute to actually evaluate our result. The take method used in earlier examples is also like compute and will also trigger computation.

[10]:
result.compute()
[10]:
[('Injection Moulder', 15),
 ('Yard Manager', 14),
 ('Landworker', 14),
 ('Marketing Agent', 14),
 ('Technical Instructor', 14),
 ('Governor', 14),
 ('Marketing Manager', 13),
 ('Joiner', 13),
 ('Au Pair', 13),
 ('Sportswoman', 13)]

Transform and Store

Sometimes we want to compute aggregations as above, but sometimes we want to store results to disk for future analyses. For that we can use methods like to_textfiles and json.dumps, or we can convert to Dask Dataframes and use their storage systems, which we’ll see more of in the next section.

[11]:
(b.filter(lambda record: record['age'] > 30)  # Select records of interest
  .map(json.dumps)                            # Convert Python objects to text
  .to_textfiles('data/processed.*.json'))     # Write to local disk
[11]:
['data/processed.0.json',
 'data/processed.1.json',
 'data/processed.2.json',
 'data/processed.3.json',
 'data/processed.4.json',
 'data/processed.5.json',
 'data/processed.6.json',
 'data/processed.7.json',
 'data/processed.8.json',
 'data/processed.9.json']

Convert to Dask Dataframes

Dask Bags are good for reading in initial data, doing a bit of pre-processing, and then handing off to some other more efficient form like Dask Dataframes. Dask Dataframes use Pandas internally, and so can be much faster on numeric data and also have more complex algorithms.

However, Dask Dataframes also expect data that is organized as flat columns. It does not support nested JSON data very well (Bag is better for this).

Here we make a function to flatten down our nested data structure, map that across our records, and then convert that to a Dask Dataframe.

[12]:
b.take(1)
[12]:
({'age': 31,
  'name': ['Sylvester', 'Sanchez'],
  'occupation': 'Marine Electrician',
  'telephone': '1-580-118-5788',
  'address': {'address': '502 Illinois Walk', 'city': 'Valparaiso'},
  'credit-card': {'number': '2523 2299 7032 1385',
   'expiration-date': '10/17'}},)
[13]:
def flatten(record):
    return {
        'age': record['age'],
        'occupation': record['occupation'],
        'telephone': record['telephone'],
        'credit-card-number': record['credit-card']['number'],
        'credit-card-expiration': record['credit-card']['expiration-date'],
        'name': ' '.join(record['name']),
        'street-address': record['address']['address'],
        'city': record['address']['city']
    }

b.map(flatten).take(1)
[13]:
({'age': 31,
  'occupation': 'Marine Electrician',
  'telephone': '1-580-118-5788',
  'credit-card-number': '2523 2299 7032 1385',
  'credit-card-expiration': '10/17',
  'name': 'Sylvester Sanchez',
  'street-address': '502 Illinois Walk',
  'city': 'Valparaiso'},)
[14]:
df = b.map(flatten).to_dataframe()
df.head()
[14]:
age city credit-card-expiration credit-card-number name occupation street-address telephone
0 31 Valparaiso 10/17 2523 2299 7032 1385 Sylvester Sanchez Marine Electrician 502 Illinois Walk 1-580-118-5788
1 63 Oxnard 03/16 2674 0284 7539 8857 Becki Cain Travel Courier 509 Dublin Extension 386.638.0209
2 52 Romulus 12/21 2367 6997 8012 1143 Van Benson Bus Mechanic 1215 Rosenkranz Bend (923) 334-5610
3 28 West St. Paul 12/25 5313 8769 3925 0738 Gertha Crosby Taxi Driver 399 Diamond Heights Drive +1-(684)-887-9216
4 43 Wenatchee 11/22 5205 4896 7375 3734 Jon Duncan Packaging 438 Vicksburg Bypass 859.442.3364

We can now perform the same computation as before, but now using Pandas and Dask dataframe.

[15]:
df[df.age > 30].occupation.value_counts().nlargest(10).compute()
[15]:
Injection Moulder       15
Yard Manager            14
Marketing Agent         14
Landworker              14
Technical Instructor    14
Governor                14
Safety Officer          13
Au Pair                 13
Valve Technician        13
Sportswoman             13
Name: occupation, dtype: int64

Learn More

You may be interested in the following links: