{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Train Models on Large Datasets\n", "==============================\n", "\n", "Most estimators in scikit-learn are designed to work with NumPy arrays or scipy sparse matricies.\n", "These data structures must fit in the RAM on a single machine.\n", "\n", "Estimators implemented in Dask-ML work well with Dask Arrays and DataFrames. This can be much larger than a single machine's RAM. They can be distributed in memory on a cluster of machines." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2021-01-14T10:51:00.125650Z", "iopub.status.busy": "2021-01-14T10:51:00.125106Z", "iopub.status.idle": "2021-01-14T10:51:00.751309Z", "shell.execute_reply": "2021-01-14T10:51:00.751973Z" } }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2021-01-14T10:51:00.757285Z", "iopub.status.busy": "2021-01-14T10:51:00.756878Z", "iopub.status.idle": "2021-01-14T10:51:02.653206Z", "shell.execute_reply": "2021-01-14T10:51:02.654409Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "
\n", "

Client

\n", "\n", "
\n", "

Cluster

\n", "
    \n", "
  • Workers: 1
  • \n", "
  • Cores: 4
  • \n", "
  • Memory: 2.00 GB
  • \n", "
\n", "
" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from dask.distributed import Client\n", "\n", "# Scale up: connect to your own cluster with more resources\n", "# see http://dask.pydata.org/en/latest/setup.html\n", "client = Client(processes=False, threads_per_worker=4,\n", " n_workers=1, memory_limit='2GB')\n", "client" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2021-01-14T10:51:02.660013Z", "iopub.status.busy": "2021-01-14T10:51:02.659031Z", "iopub.status.idle": "2021-01-14T10:51:05.243086Z", "shell.execute_reply": "2021-01-14T10:51:05.242320Z" } }, "outputs": [], "source": [ "import dask_ml.datasets\n", "import dask_ml.cluster\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example, we'll use `dask_ml.datasets.make_blobs` to generate some random *dask* arrays." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2021-01-14T10:51:05.252578Z", "iopub.status.busy": "2021-01-14T10:51:05.252146Z", "iopub.status.idle": "2021-01-14T10:51:05.303081Z", "shell.execute_reply": "2021-01-14T10:51:05.302346Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Array Chunk
Bytes 16.00 MB 1.60 MB
Shape (1000000, 2) (100000, 2)
Count 10 Tasks 10 Chunks
Type float64 numpy.ndarray
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", "\n", " \n", " 2\n", " 1000000\n", "\n", "
" ], "text/plain": [ "dask.array" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Scale up: increase n_samples or n_features\n", "X, y = dask_ml.datasets.make_blobs(n_samples=1000000,\n", " chunks=100000,\n", " random_state=0,\n", " centers=3)\n", "X = X.persist()\n", "X" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll use the k-means implemented in Dask-ML to cluster the points. It uses the `k-means||` (read: \"k-means parallel\") initialization algorithm, which scales better than `k-means++`. All of the computation, both during and after initialization, can be done in parallel." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2021-01-14T10:51:05.312085Z", "iopub.status.busy": "2021-01-14T10:51:05.311661Z", "iopub.status.idle": "2021-01-14T10:51:09.599172Z", "shell.execute_reply": "2021-01-14T10:51:09.598788Z" } }, "outputs": [ { "data": { "text/plain": [ "KMeans(init_max_iter=2, n_clusters=3, oversampling_factor=10)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "km = dask_ml.cluster.KMeans(n_clusters=3, init_max_iter=2, oversampling_factor=10)\n", "km.fit(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll plot a sample of points, colored by the cluster each falls into." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2021-01-14T10:51:09.601391Z", "iopub.status.busy": "2021-01-14T10:51:09.600969Z", "iopub.status.idle": "2021-01-14T10:51:10.143309Z", "shell.execute_reply": "2021-01-14T10:51:10.144003Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD7CAYAAABDld6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADCKUlEQVR4nOz9V4xd6ZqmiT3/ctu72OEdIxhBBr0nk5lMdzLznFPn1Omqrq4qzADTrZlBD+pCwGjkIGiu5kp3EqABBAkoQZA0mp6eaVW3umq6pqvq+JM+kybpfXjvtnfL/br4VwQZjAgy6JI8mfsFEkky1l7r3yv2/v5vvd/7vZ+QUtJEE0000cTrC+1VL6CJJppooonHoxmom2iiiSZeczQDdRNNNNHEa45moG6iiSaaeM3RDNRNNNFEE685moG6iSaaaOI1x44CtRDifyWEuC6EuCaE+JdCiPDLXlgTTTTRRBMKTwzUQoge4H8BnJJSHgJ04D982QtrookmmmhCwXiK4yJCCAeIArOPO7i1tVUODAw859KaaKKJJr4/uHDhwrKUsm2rnz0xUEspZ4QQ/0dgEqgB/yCl/IfHvWZgYIDz588/02KbaKKJJr6PEEJMbPeznVAfGeCPgUGgG4gJIf7pFsf9hRDivBDi/NLS0vOst4kmmmiiiYewk2LiR8CYlHJJSukA/wZ469GDpJR/KaU8JaU81da2ZfbeRBNNNNHEM2AngXoSOCuEiAohBPAhcPPlLquJJppoook1PDFQSym/BP4KuAhcDV7zly95XU000UQTTQTYkepDSvlfAf/VS15LE0000UQTW6DZmdhEE0008ZpjpzrqJppo4iXAd+fBmwU9i9D7UWWgJprYiGagbqKJVwTpF8H+GkQE/EkkIYTR+aqX1cRriCb10UQTrwqyAQiElgAMkLVXvaImXlM0A3UTTbwqaGnQM0h/CUQUoXe86hU18ZqiSX000cQrghAmWGdVJi1C6u9NNLEFmoG6iSZeIYTQQcRf9TKaeM3RpD6aaKKJJl5zNAN1E0000cRrjmagbqKJJpp4zdEM1E000UQTrzmagbqJJppo4jVHM1A30UQTTbzmaAbqJppooonXHM1A3UQTTTTxmqMZqJtoookmXnM0A3UTTTTRxGuOZgt5E028BEi/iHRugTAR5n6ECL/qJTXxe4xmoG6iiRcMKX2k/SVIAAcpPUTo1KteVhO/x2hSH0008cLhg7RBxEBEgeqrXlATv+doBuommnjBEMIA4wDIHMgq6Ps3HSNlDd8Zw3fnkVK+glU28fuEJvXRRBMvAZo5iDR6ALHJZ1pKF9n4AmQFpIs0jyLMwVez0CZ+L9DMqJto4iVBCGvrYQCyDrKC0NpAJMBf+fYX18TvFZqBuokmvm2IKGgtSG8xoEZ6XvWKmnjN0aQ+mmjiW4YQGlinwc+DsBBa6lUvqYnXHM1A3UQTrwBCmKC3Pdc5pF8A6YCWVgXMJr6zaP52m2ji9xC+Owv2BUCC3g7WGZWpN/GdRDNQN9HE7yO8aRAxhBYLuO56oNneDN+dAW8e9DaE3ocQ4ltebBPPi2agbuKVQvplkGUQcYT2+zONW/olpDergqXe8+0HP60FvDmkXwUtDsLaZp2rYJ9Xk879aRCR56Zcmvj20QzUTbwySL+MbPwO8AADQu+8lsFaSqnUGcJAiBBS2kj7c5AeSBtpeQhj17e6JmHsRoooyAbC6Nyeo5Y2CIHQ4iqoy8YzXU9KH+neU1JCvR/NaCpVvk00A3UTLwy+twz+IogWNKPzyS+QBcBDaO1IfxFkEXgNA7V7C5x7IHSkeRqhhVSA1NpVQc/PAd9yoBYawuh+8oFaC2hppL+kNNt66zNdT3pz4NwELQn2RaQWb6pVvkU0A3UTLwTSL4L9BWACd5HibYSeffyLRAIQKoigB39/vSClDe590FpB1sC7C/oboLWqzQWB0Pte4vUl4CC2oTaeBCEssM6ptYvws6tDZAOEjhBRpCgptUkT3xqagbqJFwNZBSQiyN6krCB4fKAWWhJC74JfBC2J0F6/QK02kFCQ7dugtSKErnTQsgiEEFrspVxZygbS/hr8PFLrRljHnknZIYSuOOrngDC6kP6U2lS1TtAyz3W+Jp4OzUDdxIuBlgERDx6xQwjtCdl0AKEl1eP0awoVlM8qflaEEcZQ8O8GiJaXem3pzgZNMa2qEOjvgic9pbwkCBEB623AAUJN5ci3jGagbuKFQIgQhM4poyER2/GjupROUPCKvLY6YKElENbxV3BhQxUsRWNtId/+Gh5ejtAB/ZWu4fuKZqBu4oVBCGtbmdhWkH5ZqSf8OugdYJ0MgsF3F9IvIr0cQk8inkAfCL0baZbBWwLzyLbHS7+CdL5RWmrjMJrR/hJW3sSrxI62aCFEWgjxV0KIW0KIm0KIN1/2wpr47kN60yBdhN4O/kLA+X53oeSIn4BzDdn4BOnnHnu8EDqauR8t/C6aMbD9eZ0b4JcBA5zzSOluc/0c0ptDPqNEr4lXh51m1P818HdSyj8T6pl26xaoJpp4GoiI0iH7JUAAz6ZseF4oZYW7tSXpC71QGfARehvSW0L6pS2zZOmr4xCJbblgKb1AiRFG6dA1FC0hg/82wncXwP5K3WYRh9C5Z1aSPAt8d1F1U2pphDHw2tJcryueGKiFEEngXeA/AZBS2oD9cpfVxPcBQu9Dmo4qmOn9L0098ThIWUfaX4FfROq9CPPIywsiWgqEFRRctS2DtO9OgnMFkGAMI8ytpsPU1eABvwx6Cxj7wPkGZAnMY9t4YC8GRd6Uur6sPhVN9TyQfhmcr4AweFNIYSGM3m/l2t8V7CSj3g0sAf9PIcRR4ALwX0gpKw8fJIT4C+AvAPr7+1/0Opv4DkIIDWEOv9I1SHdayQNFK3iTYPS/NDWHEBEIvRNcL771xuTeA5ECDHDvI429m3h76S6ALAeZ+SLCcBHhD5BSbq/GEG0gR5F+Q3mCbOML8nJgo6SbCXV9WfsWr/3dwE5SBwM4AfzfpJTHgQrwv3/0ICnlX0opT0kpT7W1Nb0Emvg9gTABT3VJygqPG18ovRWkN/tcHK8QEYTesf3Tg0iDzKt5i1qSrb6iqjPSRfpBrhRkxo+TzGlGJyL8DsI6gQi99a3SHogkaG2qQUhYCL3r27v2dwQ7yaingWkp5ZfB3/+KLQJ1E01825DSRzrXwJsBvQdhHnpq2kLovUhnEpwvVPehew+pndp0Ht+dAec8oKkAap17YR7QUroPOgetQ0g3ASj/kC2Dr9YB5hHwl0EfQWjpHV1HaC9X973tdYUB1pmAbgm9/FrAdxBP/KRJKeeFEFNCiBEp5W3gQ+DGy19aE98HSL+k1B7iGToT/UVwx4MAO658mfUdeIw8BCF0pBYB87h6NPcWgqD5SMbrLwCx4PF9KTjm+TsplcHTF+AXlP489CaauecJaxYIczeKlfz9gBDac3dHfp+x05TgPwf+RaD4GAX+05e3pCa+L1iXq+EDInDPe9rgJ9Vrt1A67BhaGrxZpG+DFt66yKZ1qEKYXw2KgpHgPVSVzFCEEHrvtjpwKV2kOwW4CKMPIcLqB34OvFW1fu8+Uu9/5bx9E68fdhSopZTfAKde7lK++6iVa9z++j6Nus3ek0Nk2r/n7mOyCLiBC90y0l8OvKnDT2wGAUBrA2NAUR/GgPr7M0BZhloga4G39OZHc83oQWoRpF8LCnE+UnpI+0uVXUsHadYR5sjWb9W5Ad4YoCP9ebDeVrSGCIE7BRSV0ZF7G16jQK06R6tB5+irkU820exM/FZx9+IoxZUSVtji6sc3OPePz6Dr3+1OvMdCJFGBa1ElxM5NJC5IkNaZJ1qlCqEjrKPA0edbhtAQxpOVSkJrQXrXlc2n0ME6otQXWjtSVsFf3f7F/gqIDGCpP+Mh/QbSuacCvdYCejdIDyn9p+bapfTU9YUOIvNMXhxS1oOgHEcI64Hvtl9STxDWmwit2ULxKtBUnX+LcG0P0zIwQwa+5z/X0/p3AUKLI0LvIqyTYJ0EfITWoZo4/MVXvbxNkLIO7miQuYfAmQatG+kvKI8TfWD7Fxu7FQ8tl0DvQwhDtX37yypA+wXQBJjDz6TjlvZlZONz1fHo3n/61/tlZOO3yMZn6j9pq8DvFxFaG8iaeuJp4pWgmVF/ixg+MciV392klCszcnoY3fgeZ9MB1ESXuOpQdKNBdu2D9vx+FVJ6AS9cV7MCn6OhxveWHnDJchW8FRVUreMgBwHrsdNpNGMXUssAnpLgQVCQjIIxCFoUjFMg6/juvJLwbZEVS7+KdC6AXwHzAJrRr1Qj/lxwzxzwpp6aPpHeEviu0mb7S4FrX0S9Xb8A+IhvVXvdxMNoBupvEcmWBOf++DRSSjTtxT3MeK7H+I0pqsUqfSM9pNt+/7hvISwIvRVQBKpQ5ztXQaSDIt0zPMq798C5BcJU8w1D77Lm/vY05/Pt+1D7lyBd1GOQoWxd3XmkvoBmbK0Lln4lULQk1NPDo3auxkFwLqlzmsfBu6mMlTwHyfEtx3tJ5w54JVXQdK4g9XaECCO1rHoKkRKeoBrZCkKLKx8Q5yboMSRvo2kppHVGKV60VsQzTodp4vnRDNTfMoQQL9zLd/L2DONXJ4nEI1z+zXXe/EensMKvZ+FH+mWkNwaEEcbgBi2yEGHQe5QbXOM3qI/nfSQa4llm9Pk5JaETUZDLwTipGyA0pHkC7SFvZylrKkvVEsqy9WG4V1RjjAS828o4X3QqCZ+/AHQF2fs4yErAd5tI++NgEooOobc3BWrN6ELqrai01Ua614LCakll7I8Eat+dBPtzRbOYG3l5YZ1AevOAjnhKiWJwAiCk5I1CC9r602hGB9Dx9Odr4oWiyVF/B1Av1wlFQkSTEXzXw7G3dk971VAqiS/AnQH3BtK9s82RDdQsxTQQCsyMngH6AFBVvLDWFQTpMGCCc/nButb4WfsLZON3iot+GFqH8sz2p4Muux7wZ4HKOkUj3TFwroE3j2x8EShYlKIF6SH9/JZLFMIM7GEjoLUgvUVFiegb5yFKaYNzFcwRwAL3LphH12V+Qlhohho6+zRWsVL6+M4o0r6kVI7GsMrWeT0/Q99XNDPq7wB693azPJNjdT5P1+4OoonIq17SNljrwGtT6oJtgpcKhi2BeZGB2BS0HJVViuhjJWOa0YnU3gccEClk45fKiB+p1BFr5/NXwXcQejBk189vaJwRoVNKvufcAeGpTFprQZiHH8yFlGUlYdNSwSzFEKAF8yABL4fvTYDWgTD2bHqqUpNkzgTccGgzTbIOHaw9IDrQjI2zGqX0US6AT+EJ7s2oDUBElamTPwN6B8J4MXMgpV9GOtcBT3WOvsbTfF5nNAP1dwCJTJyzPzuBa7uEY+FXPiZpO3MgIUJIfRd4E4AA/eCWr1ctx2cfBL+HqIiNkrEQWG89tki4ocBnnULal5Vz3UPUgdDiSKQK2IhNXYlCWCpYW4dV56III7S2De9RGLsUx+svgtalPLa1d9W8Q+mAe1WZLa1N8t6CnhDCBH1rLbgQFtI8Ae4NJb+zlKveGg8uMdTP/NLTuQDKGggToSWRRh9Yb2x6b88D6VwOvLJ1pP01IvzhCznv9w3NQP0dgWmZmNar9VCQUiLd28r1TWtFWMc3ZXfCPKxUDsJQbnLbQM0kTG/+gZ8LJGPtSG8R6S3vWM0htAwi/P4W/94CoXNIP4fQs1t2R0pZU12UshFsEOc2ONAJLQPhDxRFImIPWqa1OHgLSAlCCyOFQEqXZwmDmtEFDxUupV9F2p+oa7qLwQbQ91QugELvRnoTwQbTjtCyL3ajX/fM1kGWHu/w18S2aAbqJl4cZAHcO4ra8BeR7uSmdmjVjfccHhkiAgglGRPyhTVgCD37gMbYCn5OKTK0FDQuI30HwhsLhEKEVBB/FFoW9M4gGGZVtv0iIFU3o9DakSyrpwy9AVIAO9u0hRaH0PtBQI2+eC9u4xA4FwBf+ak0g/QzoRmoX1PUKnVW53KEY2FaOtOv7AOeXyowe2+eeDpGz96uHXZS+sH/X/yahZZEmm+AXADRgtiGKnjxF44CAhqXlQXp2sCB0IeAjXRHAYkwdj/w8Vh7qTDAOo2a4G2+uN+lSLDOg+tZZUqFA+ZhQCjttz+vDK/0vm2DsBCmUrW8BGhGO1L/ESBfmNvg9xHNO/cawrEdLv7iCo2aje96HHp7P50D3/7A0nq1wTe/vo5pGcyOLqDpGr17u7c9XmhppHEA3PuKp33KgtROW6c1ow34dj3PhZaG0FtIrwDaLpUlyzxSVqD634O3AEYv0s8jQm9tfr148aPGhBZT2nA/r2SFWipQ1lxAOhdV8dPcBwikJXbUJv8y8F0fWPxtoBmoX0M0qjZ2zSbbmaGcr5BfLLySQO00HDzXI9Oewvd8KsUnT+bQzOGn74qTrpKH+QtBIezwa/nlFloLMvxD5Ust82AeBG8UvGVF93grgbTtyZDeipInagmEsfeZDY+EFvDg6ycuBg0qgcRO2urPsvRM52/i9UAzUL+GiMTDxNMxVuZWkRJaexV36rke974ZI79YoHekm56hlzspI5aK0t7XyvL0MkbIpGf4GRopHgNlmF9HeitKlyw6wJ1UGuIXxeM+BXx3CTVbMKukfVIGBkqu6swTRvAo/0OkrKmOQCensmu/AFRB3/vE6yjlyldACLxlNZ7K3PeCZkaGAKFkiCKiZIwkEPrjG4ak9BUHL0Kv5Sb5fUczUL9gSCkZvz7J5K1ZMu0p9p/d89RqDN3QOfbBIQrLJcLREPG0+gLPjs4zfXuWREuCW1/eI92aJJZ6eQNhNU3j4LkRauVdmCETK/TieEwpG4FhfiloJikp7pcc0t+/qeAmpb0u1wNLqUu8ZTD60YyBZ1zDAwWC9IvgfIkqwt1DinOqScW9ropzeidYpxFCIN0JcG8Feu6GylaFBqF/DCKM79wMvEW28f6QLsrzI6Kkiu4Y0p9Dmkc3aaOfFkKLIq2zasML/xHorQgtsok333gfHKT9tfIy0RNgnd3cndnEK0UzUL9glHJlxq5Mku5IsTyzyvzoIn37nr792bRMWrs3yqs8x0czNKywCpie6296XaVYpZyrEEtF1wP880DTNGLJl2DG46+AX0BoHcjGV6pbUS6BeQicu0ijfz1YbNBOY4DerzrztDQ4V5FaettxVNIvqU5DZ0zRAsawshR1zqu2bfMwmtGjGnCQimf3l5RtqTervEa0cNDE4uD7WqCFzip/aW8WEX43+HkN3DHAUo0kofe3LqCJCBhD4NwFbw7MM6qF270HL6DRRNNb4Wl8OfxV8FfWG36kt4Aw+pWuXDqquac5PuuVohmof4/Qtbud5ekVVufz9O7pItGyMWOrlmqc//tv8FwPoWmc/vGxFxKsXw6CIOwXlBudsRtkOuB7BdI7jljTDPtF8IpBIFkBbzHoLAyhfDK8La/gu+NgX1VuclKAEGB/pmxKtXbQW8D5Bqm3q+AtgjFbIoTQski9Ds4NpBCgtSPdPLiXlARRHwQ8wAiGzIog2K95iyyhVB6bv2JCCDD2IkVLIOdzglFcKaRffqwL30uBMAEZvA8PIUL47lRgGCXUpmSdffHSvSZ2jGagfsFIZOIMHuln8uYMrT0tdO5+cVxrKBLi5I+O4rkehrn5V1fOV/Bdn2xXCyvzOcr5yisP1FLWVJFNRDbolIWeRZrHlVrCPAT4UL8YUBsRFQzXArWIgNCRfg5wAm/nceXlrPUqJ7ut4N5Vmapvq6Kf3geEwb6igrTXCeYuQKiMMfRW0JoeC/w39gRFOQ8pstD4jWreMPcrakHE1egufwmsdxX9YX+qinn6sLrWlvfEVRy1v4qiQLLqPggXWfv3yPBHaHrmoeN9lLzt6bhj6ReVwRMeYq3tfauOUa0l+F3MgTaoNjH7ayCO0GLKAlXWNzT4NPHtohmoXzCEEAwe2sXgoc0WlY+iuFpibnSReCZK12DHjqxPhRBbBmmAeDqGZmiszOXQdEEi86qDtI1sfBZkmj7SPLPBElQz+sDow/d3Q+MiaCNgjagAyANjJCVDe0u5w4l0UOjrA5wnqCViYP8S/Koa1+WXwDjyQHMsK6DvXqcnVHB+cD4hBOjKOU4AvtBQGnFL0S5aHNgNcgmhhwERGO6XQd5TQ3ONXZs7HWVRUQ1au6IXhAaYylPaL0Ajhoz8RPHh/iqy8TXgIs3jaMZGeaTv3FOUiZZBWMeQ3iq4t9RThl9UXYqyhjRHwDwWDMXdjLXfxfoStTbwZ1WWrSe3buRp4ltDM1C/ItSrDS798iqarjF1ywZ4bhVHNBHh9B8cp5wrE0vHXg63HKCwXCS3UCDVltx+9qOsgqwFAamgMk82vkcpXbC/AWwwMqpBQ+8A48SG48QjPPTjdMlSSsBXmbd9HcQsWCcATUVcMQBGL2uDZje81l9F2leV/4V5ZAMNIayTyitEs0A7CM434N8DWUaaB1X3ojuqCozelGJD/NmAq7YeWp8J7iKSCSAB4WHwzwdZa0J1eFIHIsFaLCAW0DSd6xSE9EsBX94C/rIa6+WNq43OvRe0swOoAiz+DDudXC6MAdCiSGkj9PamEuQVoxmoXxHsuo3v+qTbUhRliWrhyRrlJ6FaqlEr10l3pF+oQuNRlPMVLvziCrqu4Toep398jGR2i7ZwEQMRC0ZVCWUX+iikDX5F8c+EFT8ceuOZu9ikX1K0gqyBPgRGN9SvKUOk0CnQ00pCJ1dAtCMe0j1L6avsVVjK3Mi5igi9+eDtaC2I8A+CYx2k/Zn6gT4E9lfgi8AsSigOXUQDVYgNwkLKhsqYvWXQw+qeSJQFa+htFfhFAvQM6y3gwgyKqDLgkh/X1SiD/0wQSZBzKrOW9aD9/cnSwfX3GjxNbHc15Ss+ByKO0DubreEvGc1A/YoQS0XJdKZYncuhGRqdg8/HZRdXS1z4+RWkL4kmwpz44dGXFqyrpRpCQrotxcrcKtVSbctAvc77+jmU41x688lEGPQONZkbDYz9z9VqLJ27gYa4RU30RqpJKnIK/Bwi/LYyYWIrTbhEFQjN4M8PPJmllMo5T1ZVhqnFkeZekL5SsHj3QB8JXp8FzVDUg9aG9JaVz7R7D7DBnQM9jTCGkf4SQjhIY3egGLHBOPiAjjGPIJ2rgAP6IaSsr5tZCS2BNPcH1EcrwtyDFDHlome0g/EmOHNKAqh3BwXQ54eSVn6qKCVpI0PnEEbvDl5nA/q3mp1L6QHa7/1G0gzUrwi6rnP43QNUizWssEko8nwc4MpcDl3TSHUkWZlbpVKoYm1HSTwnktkEVsRkdT6HGbJItW5vsiREaEtLzwc/18A6Gczpa2zIcJ8JwkAFWFsFUQQidBTpDahimra9o5wQOtI8FmS2JsI8vv4z6c0Gkj4D6d2H0HtgjIB9SUnYjBGE3ovEAWM/aCFoXFJ8sfMN6D1B0fEt0B2QpUBhklANL+4N0JR3B85lfBylfdba0EJvKhVG9f8NsoZvvYcWeQ9QnaDSGEB6s0h3Vk3CMVSBFFlBckVJ9fwl1VSkPbl28kTImnLrkytqKo6IBVTS9vCd++peCAOsM8pt8CVCOTneCuwMkoEG/nX1aX8yvheB2rEdGlWbSDz8Wg2U1XWdRObFSLESmTi27ZBbyGOYBpH49g0OzwPHdiguFxk6OoAVsYilos+9yYCvVB5+AekaEHpzW130kyDMvQ+aY6y3wJ9RPLHQEdaT+VnN6EbqnSglyENZmFwFIgg9pXTW7mQQeHwwOkA6KvAafQjrINK5ooqD3iRICcYBkJOBtFAD6yOgpjh077Ngess+JR20r4A7jcSF8Icq8Jb/GxVsjd1g/xY/dBwtcO6TznXFTaMh/Xm0gK6R0lH3VkSBugqwLwIirp4WpB3QO2Wk9LbNlKW0wb2pnnJkDenc2kApvRTIknrSEK3g55DuOMLc/3Kv+RLxnQ/UtXKNi7+8SqPaINmS4OgPDr5y3+ZnQbVUY/TKBJomGDyyi0hsYyAORSy6BtpBwMDBPsLRF1+lr5SqfPZvv6ZWqhFJRBg5NURL5wvIjGTpgce0v6oaLp41UIswWCdRcjYNKdtB7gFhqZZvfxXpV5TvshZVHYnSAS31kPpjrVi3GgwKyCgemQklVdOTQcu4msQi/UWw3gxc6GKABOeeCuSkgBWQy8pASe9VlIX0ofGF4rVlWdEIzrWAx/eVMkQ2oP4xMlRHjRSrKTpH7wK/ju/Nqet5qu0dDFVUXDO3EqlgbNgciChC39xMI6WrxohRQ+iDW3pxb77HBtI6Dd79gLpq4fFT/TSVScs6aszay82m16+JQGnZld799xm/36vfAVbmcsrgqKuFlbkcxZUy2a5v44PyYnH145uqAOn51KsNTnx4ZP1n1VKNCz+/DFL5gfTsefEeII7tcP7vr3D7q7tEU1G6hztZmFymtTdLKGI935OKiAB6MGHFVgHmGSH9smqHllWkMaJMooTKPH13EewvQGhIEULqe6BxXhX/jD6wTm1QVChpoQb+F2CeBOscAhe0lCqkeVPKl1qEEVpyXdnhO/dUkNU6lIbbPKOG2xpDil7xy2D/BvyGmvziVUCLgehSGbM3GkgaA7mgXwXzNHBNNdKEfgruZZXReosgQ6DpSkJnDq2/B0UrnUApSMwtuX/p3lVPM4TVphT6wY5qBCJ0DOkmAQeh734sBywCukM6t4A0wjqw49/ns0LVEI4E1EfvlhPdf5/wnQ/U4VgYz/Uo5yuAJBR5PadzPw5SSuqVOvF0DN/zqZU3Dl+tlmpIX9LSmWF1Pk85XyHd9iDYea7H7fP3WJnJ0bO3k8FDu566uNKo2niOQ+dgO0tTK8yNLuK7Pl/+bZloMsrxDw498+RzISIP6aRTCP3Zp15L927wSJ5RfhxGzwNuUq4oVYmWVkGp/i9VG7gwwe5D6n2wpmCQNUVZ+AuqyCd9oIEInVbn0vuRlgmygtC7HtFzN1Q3n3lKNeZY7yCMXQ+oAdkAvw5UAFM9UWi9QDDEN/wHakPBBOsgQu9D2gXQjoExjNB7kI1Z9STgzYLUwWuAsQfYyMGr3/NjuFm/yMZuSpedhAUhLIS574nHrR+vtWxp//oyoRn9atLNdwDf+UCd7cpw6O395BcLtPW1vvJOvWeBEII9J3dz+6v7CAEH3hqhUWugGzqGaZDIxLAiFivzOXRd26RrXphcYu7eApnONGNXJmnpzGwI5DvBmqOf63gYlknP3i6KS0VaOjOszK6SWyjQsevZPaKFlnr+QiI8VEx0UI++Dz2Sa23AfUVVSAf8RSWR86ZAq0Pt3yH1VqTeocz35QrYn4CMgHlCTa0JjJyEEIhHmk/Wl6APBNPEfTBOgzeOrHyO1PsQobdVt6MWBnc1KMJZYA6qYKl3qgKh3oHqWkypYBv6APDV7ETpqY2g8RWgq/csdDVv0b2Cr2cQ1EEkn5wd67vB/zpo/tnFWmv/s0IpO3iibav0i0hvAoht3MSa2BLf+UAthKBzoP2V+Dm/SHTv7iTTnmL06iRf/u1FXNcj25nm6PsHSbUmOfWjo5TzVaKJMJH4IxmUBIRAaEKJAeTTX185+h2muFwkFA3hez7n/+Ey1WIV3/cxQ6/HR0kYe5F+XfG+5okHxk5+WckE9T1KBSC9gENeBGIB5TAL+oBq7XbGgBDop1Wm6Y2C+dGOnkRUJ+V7gIu0z4MMJpt780gEIvwRWO+ozF8KMBOKBtHTYO4NzrGRK3444KqJ5aeRIqPc/dwxxRVLCTjQ+K0qRGotaljtY4K1ZrQh9R+AdJUm+jlkbL47qYqigDRPohlbq32UydYXar2yjsTfNLKtiY14Pb5dTewIy9OrTN+aYW5sAcM0SLclGbs2ybH3DxGKhAhFQqzM5bjwi6uYlsGhcyPEUjHa+1tZnlllZS5H/75e0m3JJ19sC1ghk9aeB34dB8+NsDS1TP/BXjId6Rf0Lp8PQoQe0BMB1t33ZEM1j5iHEeZBZPgPofFb8FuUI59cQrVyLytdtD8aNKSoZhlhHnqKdWhI3wZ3CuybKtsVqUB54aLpKWT4I6SXA+ei2iTcSbAvq1Z1LYEwRh7jWucrHltEwXofcJUChbTSi2vtSoUiS4oGeuxaI4/vo9kBpPRVMVSk1VrcG7BNoFZNTo3AZKsU0C/Pel1b/b4w4AVOT3/d0AzUrzGklDi2i2kZCCGwbQczbBKOhKgUq1SLVbp3P+BzPc/j+qe3iMTD2HWH2+fvc+LDIximwZF3D7zwCdCdu9rp3KWeVBzbIb9YxAwZT02rbAeluigEk8EfbC5SOoqL9gugDwejuR53osaD7jxvVCkjRBgtdAxCx/D9sgpoTgHc34BXB1ZVJ5/hqKcR6/RTucdJKVVRMzBDwl9QnLUxuE4LCC2JxIDaXRSPXILaXyuO2l9CYmzLA0v3fjBsIQFyHhH+ECEi+O504NEhAV1tUs5NIK4Cuz8Bog1hHXrB1qWC9UEFwnv85iBioHcr2SQawhx4pitK6at77C+rJwKtC8whNU39Oxawm4H6NYXdcLjyu+sUl0vEMjGOvnuQ7qFOlqZWyPZkyHSmGD42yOCRjdXsNVpDCFQ2+BBe1ofX932u/PYG+cUCAPvO7nkq3xLfXQL3mlq83qWGBgiBrH8C6EhXg9A7674b0r0fdPnFwf8aqX/4eKN7EVXytca/BwzVVu6Ngjms2rqdC0Hrd0p92fU41P8deJ8q1YRxfMdBbU3DLYmqwKi1QOhN1SYfPreuQHmAEGCpLBMJvqGCjrsM7gK+X0RYh7do1nAAPXhtYPUqUIVGCDLpNNjn1XH+StCYswf8SaSbeeYAuRWEEIqOcW6r6+idqjistWziq9WxxwPZpPkcjSi2oqm0drAvgDuu6g/moe8cldIM1K8pVmZXyS8UKecrXPvkNiszq7zzT85y5ifHcR1vU3u47/uMXZuiUWuwMrNC954u9p4aeqlrlFLSqNm4rkdxpURrT5ZaucbS1MqOA7WUnur4Q1NfNhFV7dRaL6Aj9NbgEb4CBM1Bsg6EVAD2KyowPCZQq47DfYrmkFXwboDxvjqVt/BAw+3NA1J5WIt0MGtQBgNiH123j/SmQTYQereyA5U1ZOMTlcGLiCrUefcBAebxTRywagcHGf5JcA8M0BqqgOnNqU3CX0Q2LkLoLOApUyiZV1SNCINcBXPv+iamipy9SorY+Fg1mpinUJarxUCLPQ2kkEbvOn/tu3PKEEtrQ9tBO/iW91mLI7UUND6Hxj8g9d1g9ilZ4yM8udJ5PxsF9wBWMMBhVm1ExlHlaugvAs1A3cS3AMM0qFcaLE4tE89E0TSNmXtz7Du9h9JqgZuf30boGoff3k8ym2Dq9iy//pcfE46FSLYkGTk9TDwdo7BcZOzaJJF4mN1Hdr2wZh/P87jx2R2WZlYIRy1CkRDLs6vUK3Wy3S3Mjy/SsWsnnGFQALPvgzMayKl01b0nxLqR/9rQWCl99ec1lzpzd9BkssWZ/bIKpiKqLmPuB3w1cirQ1a6pKKSsBtplAyWbawFrCNU4s3kTkO59cG6AMJDeVDANfDXQT6eVn4exD2F+qDoEnSvI+kWkMYgwDqjXOFfUycwjiMifqPfb+Fhxu/ZVVRB17ql/X6MT/EUV4Ny7YL0XjNkyAs9qGwipe+5eDoYhZNUTg3kc9MMqeGtxkKtI9x7C3Kd8vu2v1X3yJpEijHiaCTFr90S6gb+Kr9Yoq8GItZqiaF4wlE78NNJbDrol66gpPkee/OLfMzQD9WuKbHeGPad2M3Vnhkg8jO/6ROMRpJTc+Ow24VgIz/W4+dVd3vjJCe5dGsWtu+ipGFN3ZnBtB9dxufyb6ximwepcHiGEok+ml4mlYrT1Zp+ZDimtllmcWqa1u4XVhRx9Iz2EYyGufXKLernOtU9u4jlPbr4RwkDSAVwMMlj1ZRPmW8AeFay0FGsz/6RzTWmfEWAMoG1T4HtQQHSDR/4B1iaZYPQ88PzQOtTgAn9JNZeIaBAIz0N9UWW10g5e+xD8VRAJlUn7S8ExAUdbu6A4ab+KjP0HaiiAn1dB072vfD+cGwGPK8G5iYj8WK1b6wTnDuAo+Z6WgNC54PWo940B6zJBY+P8Sa1drVkEdIqxG+hFRH4AUqqgrLWpda4V8WRD0SZaIlDMbNTp7xyayvKxVNYvhNpEH6I2pF9W7fXSUZTOY7xXdgIhTITRhdRbg9+J+dznfB2x40AtlNDxPDAjpfzZy1vSdw+u41Ir1wnHQjvOaDVNo2ugnb693azO56iUqrR0qwKNEOB7Pr4nMQ0VaBOZOMnWBNVSlXRrklR7Cs/1cB1vfWRXabXMxbErqkjZcDn0zr71YuDTwrTUR6dWruE5HrFUlGRLnFAkRKYjTTlfobBS2lmXpNkL/lGwEqrdOfT2Q6Y9D7JlKWXg89yhClb+PLBN9iRtkPVA/VACXEToXZVxidRGqsAcBobxG58p5YKfCwpeLaAJpDeN0EY2nl/fBf55ZayvdQRBGnAriv8mAvbvlNrD3Af4Ktg6t5FE1BMDxQeqkgDCPKiG5+pdoHWjBv4GxQa9A2o3QN6A8IcPcfbzD9E3C0r1YZ4IXPdAmIcQIoJEqicWbxLlVHhUnVdrUd2W/lLwvp8+m1b3UlMdiOIOGD3K90Tv2kB7KA+UMghTWcqGf/RCaidCmOtDHr6LeJqM+r8AbgLPSyx9r2A3HC798irVQhUranHioyObfDq2QylXJpaK0TfSw8p8jnqlQTwVY9/Zvfz2X31OvVLnzT86CcC+N/ZgNxychsvBt0awgg2h/0AvUzenMUydzoFebp+/R7arheJKidJKCbfhklvI076rjY5+pZ6olWvqWpnYthuL0DSGTwyyOpujY7Cdjl1tSClJtSVZmV1FaILOgZ01wAi9E2mNqHZo69y2k7iFEMHkkYBLfpxtp4iC1hEMnQX0/kCb/BinP/OIojSEoYqKsgj2NfAr+CKNZnQoJYpzXylORGcgQdOUSsO+BnIq4IDTaqK3/StlyKT1QePXKuN0Ag7cOgaagTD3PLQKTQVxYy+KppkIGmR2Ke5XLgA6uLeR1gFFywgLpK/GnglAGAgtsakTUAgB5hGVZQtz/SlFCAuscwFFEX5i4VSZPcktm1rUdU8+5sVO8HRioFrbJc+tDfweYEeBWgjRC/wh8H8A/tcvdUXfMRSXi1QKVbJdGVbmVAdfZPfOAnUymwABq3M5zJBBLKUmttRKNdJtCeJ7Ohm/Nk3nQAfJlgTn/vgMsFHdMXx0gL69XeiGjhCCudGF9VFdumlw88u7xFNRFqdWiP5EUSsXf3EF3/OJpWKc+OgwpdUyS9MrpNqSdO5qZ+z6JKOXlUHU/rN7NzQTHX3vAKVcGStsEU1sXc2fvjPL5K0ZEpkYI2f2YIVMhHkAzM0eEIpnngcRUwb11vGg6CdAhAJlQXZTcFmzT0UWWfPMkH4ZRGTbLjihxSH6Z0j7IjhT4E+D1hpQFRfxtXeUkZI7psz/jV3gXAc9o7JV+0ZAnXSBnAFiSkniXlZOfloC3FmVwcpF0FtVm/OGdYvAm/queo/WGdWp6K8iZVHRJwKVnUsbRAihdyCNveppxDiyyUJUSk9RO+jKt3oL4yUhjB3xyL67qDhvfKR5CO0pPTSEdTgYLVZXo8GaA3N3hJ1m1P9n4H/H49KRJraEFbFYnFrm/pVxQmGLw+/u3JAmkYlz5ifHqRZrxDOx9UzcbjgYpkEoGqJcqOI6yuB+u0fIUCREcbXE0vQKvSPdhGMhQtEQq3M5dEMjmoxSLlapleuU8xU0oZHpSrMyl2NxcpnbX9/DCllM355FN3TGr03R0pHGdVxGr0yuB2rPU+oP3dC3DdKVQoXbX9+jUqhw4R8uM3lrhg//o3e3dPt7wDPbgIPkBJrRjzD6VBec/RkSbdsp2ULoIDKBGuPjQC6XDrr1tnlSEBFE6ByEUFSIX2G9DV3aKCc2GdAVJvhjKvsVvvKglhUIHQI3GQS+bDAJfQI8LbAj1UHvhcYX+O5t0Pch9IzajIRAGPsU9YF40FYv4mo4r3NZKVGsM0h3HikWVHHQG1d8vF7efB/tS2pmpJBqMIM5sumYHcO9EXDOJjjXVFv8UwRbobVA+EcQuBs2sTM8MVALIX4GLEopLwgh3n/McX8B/AVAf/+rM0KxGw6FpSKhqEWy5dXvK77nE45ahCMtuK6H53hP9fpYMrpp9mH3UCdLk8vkFvJ0D3U80b+kVq5x8RdX0ISG3XA49sEh0rEw2e4WookIEzem1KQZTdA93IXdcMgvFdANpbwASLTEsecc6pU6sWSE4moJ3/PJdKQYvzFFo9qgUqiSm8+DEIycGqJ3bzeVQgUp1UQbIQS+L6lXGyzP5Iilo5QLVWbuzTF0ZGDzwmXtIZ65oLJIgs+WN4vysogqbpUG25kPSXcRZBWhtQUDCnJquO2jx0kbFZQlSm99KNAhN8A8qcyctA4QiyDnAuvTg+DfVcEzdE5l8H5ZeYXY58H9CrROcB2wDoF+Tl3fmwLZCVKHxv9HzVw09yDMA2rDFWmk9NSGJB2E0YOI/BhpHVVrc+fAu6nW6y0qzlzLgDuGNIYeFF+lG8juOgBHBeznCdQiqqRwOEHhcKPcUBUmE48NwiqhaNIdT4OdZNTngD8SQvwUJcZMCiH+WynlP334ICnlXwJ/CXDq1KlncJN4friOy6VfXg2c8uDo+wdp7f52KsB2wwEpNznISV+SyMTJdiubVd/zn/takViYMz89gWu7mCHzicWYeqWB9CWpziT5xQKVfIXW7hbC0RCn/+A4v/zvPqa1L4vneCyML9Le38r0nVkGD/XT1ptl+vYMi1PLRBNhWrtbaO3JMnVrBs3QmR9b4Hf/+ks826VaqfOjf/YeUkrmRhfwfcm9i6MADB7dxeDBfuLpGLsO9DJ2ZYJsV4ZUaxLD0KlV6pRWy0QTkfWNp14zcKtRotEFhKapcVJr0NrBvYIMVCHbDboFEFoYiaeKilKylebad26Bc1dRBFpcnc+vqpFaxlE0Iwjs1ikw9yOlgxAm0r0TtE6jeF/rI8BXTwLWSXAj4GugSaVK0DvVer1pkMuqxVxLKIrFHUUaw+vcrzr3HRA60p9GWO+sUw2+e13RIFKCewG8JZWlG22oRpjgvQsDqbWrYC2BDXz4zuC7s8HGEvyD1EFPIcx965896eeRjc8BV20KD1nGNvH8eGKgllL+l8B/CRBk1P/bR4P064JauU61WKW1u4VSrszyzMq3EqiXppe5/ultpIS9J3dvUDqk2pL07OlmbnSe1u4MbX3Zx5xp59A0bce2ovFMjGgyysp8HsPQyD50TzRdY3l2hfyCGqCabkviOR7Zrgwz9+ZIZON4ro/TcEgMthOKhtA0jb0nh6iWavzN//XvyC8USGbjNCoNJm/OEM9EGT6xm4nrU6TakmiaxsS1KQYO9CGE4NC5/aQ7UkzfnsO0DBzH5ZN/86XytBZw6odHcWyXK7+7gVOHroE2Dr59CE1/8IQkjEHQYjubkq21Kx2xt6w6Hx9x6fP9quKERTQIaK1qurdA0Q1IpN6D0OJBo0ZiPR+U3qIalgvgLSAsAegq83bVqC20mrr+mubb/hK0w+oaXk51C8pysIE89D785WATCoO3hHTHkVQQeo9qpnFvQsDRo6WCpo/3N/P11vGAo9bUvXgKSL+gGpGQ6v/GftCjCHN4Y1u/q5Qk6ulnAdUZ+XJGwX0f8Z3SUSvuNczy7CpI+a0ZBd29OE40GcUwde5dGqN7+MFUZk3T2HdmmL2ndqNprybDWNvAPNvl6PtH1zNWx3b45tfXuH9pnHAsTPfuDlKBYVM4FqZcqDJ7fx67btM91Mny5DLlA73rlFJuIU+mLUl+ocDKbJ6+fd1IJLVSHbvukGxLsDKtFCDp9tSGzL93uJtUNsn5v/+GmXvzTN6a4fSPjlKvNMgvFlieXcX3fObGlrl9vozQ0xw89yCDe9KU7IeheN/N3sSKA/9GFeHcBTUNRbooGiVo2sALvKM3/+6klOr42r9SNE34PaR0EcJAGMPKpQ8XKbJo2oMCsm/sAee2sjaN/CPUmKwGwti9ccPRd4F9GUQRCKkGGRFBupOI0PtIYYE7EwTFYTBTyrlv0/s3Nz6NPA0Chce6leoa3fHoWC+RADmO9POAseVTy1Nd1q8gnUuqRmAeRtvGUvb7gqcK1FLK3wC/eSkreQEwLZMTHx0mt5AnHA19a4E6mghTWC6i6zqhWGhLKuJVBWkpJf/w//oNS9Mr+L6P47j89J9/BMDsvXm++fV1QmGL5ZllUm1J3vmzs+Tm86zM50hlE7R0ZxhbmaBRs0GwYZJLJB6mb18viWycwlKJPScG8X1Jui3F7L15jn1wiFQ2SX4pjxkyWZxapr3vgUa3UqgipaRrsJ2Zu7PMji6QyiZItSWpVxsqo244ZNpTzE8sMXS0nXAsgtCim97nM90bd1Zl0KIdREXRHNZbimddH+PkqELlVtf0VxRXLHOKFrC/QZqHFAf8UKPOo58GzdyL1LtRGag6r+/OqwG6dKyPIdOMftWSjYd0F8AbVzy5vwg0lPpEH1CbhXtBBf0XncVqaaVP9ubUuUWwgWkbnwyFsStgRsoIvW+dI39WSOd2oLeOgXMJqbc+0eP6u4zvVEYNEI6G6Br8doXv+97Yw+iVcTzXZ/cjJkkvA67johs61VKN+9+MATB0bJBYMkqj1gBYHzjr+z6Lk8uk25M0ajZz9xcenMfzaFQb9B/qI5qM0D3USf++XvpGerDrNmbIRPoS3/XILxU58NbIhsJmS2eGw+/uJ7dQINkSo1axufq764xemcRzHA6/s59sd4bRK+NYIYu5+4uc/OGR9Q000RJHN3RKuQp7Tgyx58Qgmc40yZYEsVSU+fFFJm9M0zXUQSK5jMHHyIaONA+jGQPPfyPFWuHQBz2OCJ1e72qTfjVojomvN5Zshg/UVTDRwig99UowwqusslDr7S1fv96sIn01h9H5CjCVjjv03npmvE7TGCbSn1DFUK1FBUshlCbZPKgyXGNnNqxSuoFsMfzETU+N0TqN8o3WEDQCieOjRkuaemKRFRDh4BrVQJf9LAF2TV/dLDrCdzBQv2jYdZtyvkI0Gd12YGw4GuLA2eeopO8QUkruXLjPzN154ukoTsNVgdT3+eZXVxk8sosbn90hN5+ja7iTEx8eIZqI0H+gh0//7df4vs+Znx5fP1/fnm4GD+9i9Mo42Z4sxz88DCiqYH2yuAbDx9X0brtuk1vIE0lE1u9Fe18rhaUit766j5Q+qwsFrLBJuj/L9J1Z+vf1AEKpRmyHWqWxPto0loxy+g+OUylUiaejGwYeGKbBuT8+Q8+eLmqlOoN7l9HNoIHGua1awp8TQu9SPhFyGYwRHrbmVAFscxCTUiK9GRXotA4wjqu2cL8OZreiT7zbgcJkWXHYIoZ0xwO1SY9qnJEesvFVMB/RAD0SeITcV8Ha3LchwAktAaEfBE0pcRVAzaNK842nMuvGPyCFDtbJLduofXdB6b7XmmhEGEJnt225lt6iGgSstyl+HlB6gi2OlS7S/ipQhKwNs7XVNaxzT/0UJMwRpFMJFDRHvtfZNDQD9WPRqDU4/w+XadRsDEPn5I+ObpLKPe/5a+U60WR0kxveVijlykzfmSPblSG3WGB1LkfPcBdjVyfILxW4e3GMVDZOYaXE8mwOITTO/uwEuqGj6RqGZVDNVykXKoxdmWRldpWRU7t598/PYhj65skwW9wLu2ZjmAYnf3SUaCJCo2YzfWeOls405VwFw9DZc2I3rq203cnWJLFUlNX5HKGwSaZj46N5NBHZVnNdrzYoLpeQvsT1UiALylNbfzEFYiFMROjEY49R8rY8CEv5R3szgdNdBBhHRH6ADB1X9IdvAw2QjvLUwFP+Gd6c0j+LuPKK1t5Trd6NnwfcbgEYUIVBbwV8B+ncQIY+eKA2gaAL8UGyILQUIvwDtXnU/15l9rhI+yoi/N4j78MO1i2U4kRYIOJIdxphtQQG/AWVLWtxpfRwvgapI70QhN59vJWsLIK/ooqJ7ij4JYR1VAV7bxGhDTzNr0ZtDKF3n+o132U0A/VjMDe6wNiVCdr725C+T2G59MICdbVU48I/XMZ1XMKxMCd/eATP81meWiEUC21pmLTGD9t1B9/1GDq6i8nbs6zM5Tj09n5GL48xc39hnZ9vVBuU8xUmbkyjCYFpaUzdnmX8+iSLU8u0dKSZuDlDa2+WRHrz43l+qcDyzCqpVlVgbFQb69Pc80tFookIhqljhgzK+Qr1WoNMZ4qLv7xKIh3lJ//ZR1ghk5M/PEK1VCMcC+9oQ1rDzS/uUC830HSN61+F6NmtMXplkWi6lSPv1VVWL2sqiApDZalr1qNG33P4HCsoY/rzSqeMQFonVeGO8AOuWNYQWgZZ/xycS4FvRreyIdVaVKCv/1xlmtbJQBtuq+waVKD2i2AdVny36FTWqO6sohC099c568dC6IAbFENB+qVHOhADz2p0RZn4+YCySaui6hpdgwj04KvqferpwHSq+oQCYUjdI78QrCeM9Isg/BdWU/g+oxmoH4LruMzcncOxXdr7W7l3aZxSrkJ+sUhrX5ZTyef74j+M1fkcruMGk8Nz5Bby3L88SaNax3U8Dpzdu8nQKJaMsv/sHqZvz9K7t5vh44P07u1WDTVRi66hLgxLZ2FskXRbgq6hDsyQSaYrTXm1jI9PtqMF01TuazKYMrBV8bNSqHDpl1cxTIOJ61OMnB5CCEF+qYD0fWLBvTBMg6PvH2Tq1ixS+syNLnLs/YPcuXCPL/72Au//+ZvEUrFnaj5yGi5WxETTNXKLNe5f0Ul37KO8WmHixhR7j5SCKSchsN5U1qHuXcBAulOqEOcHrd76oHKxE6ZqRd+JxlfWwFtWLdp+Bbzp4JH8HtK5A1iKy8ZVQZqoyo5ldN24XtZ/rhQX3oLKqq3TinbQBxR14i8rvxBjryrW2Z8E64yCN4f0C5sCtdI1z6+3oCsj/pNI+2rAPfvI+m+Q5l609eYWE6QP7jeAAOsAGHuU1M9fBVkO6JpVle1rncB4wIkn1NPAYyC0mPodOHcDgUxcdWrq+4Ohwk08D5qB+iGMXplQbdKmzsydWYSAI+8dYGlqhY6BtvXM8lHklwrMjy+SaInTvbtzy8D3MCqFCo2ao7ool5XVpKbrysu5K0OlUCW/VNjSea57dyfdux/MomvtyXLw3D6WplY4MtJD93An9Wpj3dFOCMEbf3ACu9LAtV3e+NlJdh8dwHU8VuZyDB7uQzd17n0zRiQepq2vFd/zqVUaSClJZhOszudACE7+8Cir83lSbckN9yLZkuDgWyNUSzUWJ5cZvTJBJV8jkalz7dPbvPHTjfSC7/tUizXMkPGAC98CI6eHuPbJLaQv2XdmmHsXR/Fdn3q1jmcXgiDdDjKnJlr7uUBSF1a+yDKvuged28rrWkhwV5BGJzxUONwWIqSaTZwbqLbvc6p9WphBKzjQkEHQbVVZql8E4yCqMDip+GvRpQp+WgJhvYEQGsJoQ0b/VAVivU1RJCKuWuKdUcXx+rmgG/NBgVr6q6rjUUTBn0aKqPozIEJvIRu/Ue9fSmh8go+JMPqUkkXTIfTDwA41tT4gQGpRwED6y6jZi2lF85jHAYHQW3c24UbLAFVUkXUZtMEH15CqyP1Y+qSJbdEM1AFWF/J8/jdfI33JnpNDNGoNWnuzrMzmyHSk2P/G1h1dtUqdS7+6hmkaKsjr+mMnnq8u5Pnm19dAgq5rdA510NHXSjwTI92WZHl2FSFg78DG6Syu4zJ7bx7P8+ge6twQ4HqGujZMVHnYnc/3fVzXY+jYIO272hg6sgshBAff2rd+3i//9gKu41HOV7DrNqnWFK19WaJJxS0blklLZ4ZwLESiZftJ1dFEhJEzw4xenaKtv5Xu4S7q1caGYxzb4cbnd1iZWUUzdI6+f5BM+9aSspbODOf+RBlN6bqOYep8+tdfU1otYZgufbtr+N4KiCqJtjBCHwwy2xKIDpQeWgBeQJG0KDmek0PiQOj9xyg6QAUcP+hm9BWv6+eUskFLKGGCBHDVUAJ3ErR9EHpP0SK1fw1eHpiG0JsI68SGTF7orRsM+pU2vF0FSBFHDQJ4pMlXKpmk8o6uqYzXHVdr0FJAAuSS2iCkC+41tRlYB9X6ZRGlVEk+dN0IhM4FXHJSFT8bvw2Ce+IpbE/XlB6t6hoBDbJxOvmRbd0Rm9gezUCNquTf+PQWXUOdjF2b4vqnt3jvP3iLPSd2UyvVMCyDSqHK2LUJMh3pDcNb7ZqN9H0SLXF8z6dSrLI6n+PGF3cxLYODb41s8OJYnl7FskwSLXFW5nJ07mpbpwWOvHeA0moZK2wSS21sXLhzcZS5+wtoumB5epX+A73YNZvW3uxjbVNX5/OMX50k3Z5k/OoEmfYU2a4H6gan4dCoOWS7MixOLtOoNhg8tIuVqWWOf3QEIQSRuGoiuvvvR7EiFkfe3b++vpl7c4xfnyKVTTB8cjcd/W388f/8R1z61TWufnyT9t4skzen6d/fy+p8jgs/v8ztr++z99Ru4rEw03dmtg3UoAI0qGJmLBUlnooSS0ao1+CTv9XQ5DxShBk5tcjAwVawzgTDCGKBt/QCGPtU44RzFair7jpQQYXHBGpZAyTCOqi4V7kKYjfKGD+YQ6i1Kd8Q0aKmmwfGSn79KxXQjX6V+Rv7nrApBBAxNaDVm1CKCX0Q351QdIjeidA7Fa/sL6pgHmi+16eOW6fBSykvFHMENWRgObAyDeghoohHXO+ElljntJW/SENRId64onnMvU9UXghhIY3B4IlAgHFK/cC5gZpO7qs/G32BVar73HWE7wuagZogk9E0UtkEI6d2A4K9J4eoVxvM3JunWqyxMLFIJBZh7OoUp//gGImM+tLF0zHS7WlW5lYxQybtfVku/eoa4WgY13a5/fU9Tv7w6Pq1kq1xpm5N48y7WGGT8ENB1jCNbZt0CotFki1xDMtg9PIEuYUCZthg+s4cZ35yfEMjCkBxtcTyzCp2zUYIgWGqSeaPeo2EY2Ha+7IsTi5Tryq6Y3l6hUbdRjc0EpkEju1w+6t7JLMJauU6974Z5+h7B6mWatz+Wv37xI1pbp+/R0tnhqFjg/Tu6cKyTJJtCe59M47juPzmX32GYWpEExHufzPO0LFBuoafrHlfmFzixmd3sBs2Nz67rdQmdUc99XS34HsrONUZBkYOKWoi9C6a0OEhX2QpXaTeDs5FpZ8OCmmP/2DEQEsGEjtA6w5kcm8hjV0qWOsRFXyQ6tHfOovqzEuozkRZUBSK0bnlJXx3AdyrIEII87gK5ubhwJPDAD+PdL4BEuBdQFqnwDyDwFUFO28RvAlFiaAjtCRC78DHCWY/qnFVgPqZdjC4H9vb8aghAz7SmQD3VnD8Klhv8ejsw02vNQ4E8xyNB0FYiz2YJqMlkX5BTaSRzvposu/a1PAXjWagDnD47X3c/OIOkXiE/Wf3IITg+ie3VIa8kKewWOL4B4dYmVulXmmsB2rd0Dn6/gGqxRqhaAjD3BgwfX/jF6Kjvw3zA5NqqUq2q4X8YoGZu3MkWxMMHOxbzyAfRf+BHm5/dR+kJJYMkwj8O1bnVmnUbKKJCJ7nYddsbNvl87/+GtM08DyfaCJMbqFAx0AbLV3p9XOWcmXGr08RjloMHR+kUXdYnlrmi7+9wJ4Tu/m3/5e/o39fD3tPDSF0Dc/18F1/fVOQvh9QODqL0yskg67Ce5fG6Bhop7Baol5r4Hs+9y+NkWpJsDS9QiwdI56Js/fUbvpGeja910qhorTVmTjRRISxKxPE01FcO4TQNDp3t+PaymJVAr5boZSrq0496SKtE4hHOvSEMBDmgOKnZTXQIj8pQzRU4PULqnEjyDiFnkXoqjPPt78BaT6kjqiAUIZFUpYUx2weQXvEIxoC6Z9zQW0IfhXp3ECEzgRBSwU5SeDop4WgcV+dX+9WVIowQO9CcgZkMZimojzF8WvqdcqwZMN1FRVxHalFEeapTW3nQm9DmqdAfgbGQYTe95Dy4/FzQ5Tz38bCsTBPKIMpQBgjSOcWSKEokrXuym3mXjah0AzUAVKtSc7+7NT636WUlPIV0q1JDNNgeWZVaYGjofXRVmvQdX09cAMcfGsfN7+8i2Eon4+HIYQg25Uh25WhWqpx7ZNbhGNhpu/MgZQMHd16aknPUBfp1qSyCa3UufK7m1TLdTIdacKxEHbD4ZtfXaWcqzB5a5r8colUa4KOXW30jvTQt697wyawOLXM//f/9Df4rkf7rjZ693YTilj07eshv1TEdVyKyyXqVZvbX99n35khxq5OoRkapmWQWyyQbksyeKSf8WtTJLNxki1x7JqNaelYIZ3VuRx21aZnbzd6VKd3bxeNWoNka5L3/vxNYqkouq4rbXSQUZVyZT75/33F4sQiZsjip//ZB8RSMZZmVtA1jc6BVkUVaYJkNkk5X8Z3OhjcewP8mApo7jRYW9MpQoRVwc5fQmIpI/3HZHNCWGqc1hbwnfvKi8ObQTKiXPfWpqZo0U1a5q0hUYFUQ3Hij/7UUoZKzh0lr9MHVfHUuYMUEYTeimZ0AQ8Xnh2Qi6opSNbVAATU50rKRuAZkgG/hHRub6kl14xufM6CczEY0RVZf29PC6HFlDHU2nvSIqpBSOrqve+kUPk9x/c6UC9OLbM4uUymM7VJrSGEoGuwfb2j781/dJqePZ3EkpEnutZluzK8/Y/P4Ps+dy+OMj++RHt/K3tP7t4QLF3bpZKvMH5tkvxikVq5SqYjTTKboF5pEImHN1Aaa7xwIhPnjZ+eCAp/yp0uN79McbVMPBVjZS5PtVBlYWKJcq7KO//k7Pp17brN5V9f4xf/4mMWp5bp6GtjUSzTvqsNoQkqpRqaoWHXHIQmiCbCuLZHS1cLiUycr/79JebHF5m+O8epHx1l8NAudh3ow2k43L04hl2z6d/fw1d/9w2p9hS79vVQXCmx62AvM3fm2f/GXnYd7AuG4DbQDA2kpK0vy74zeyiulpm8NUU0EWVlLsfXf/8Nb/+TNwhFLTzP5+SPjuA6HmbIRNME4zemEewik9b46lcOhiUZOVsj8YhJoTJguhIUA4sqOEgPRBKpxUEf3NBc8iRIWVfudcYwSmWhI6y3nkrVIIShCofOlYD6OPjINTxwvglmJxrgFRVv7pfAv6Z02s5tCL/ziITPVBmr/UtAQuijB+d0Z8G+EkgEuxU1st369B4QIaSsKWXKC+oOFMawmojjlxDmnu991+FO8L0N1MXVElc/vkkkFmZ+bJFQJLTJErVSrDJwsA8zpJNfKnDwrb1PxaXlFgpM3Z6lpTPNzN05WrtbaOt9EEE8z2Nxapm7F0dJZOKksgnGrk2QXyxRXCnR2pNh3xt7uXdpDOlLho8P0t7XSq1SZ/TqBHcvquJe9+4OFieWGbs2we4jA1SLVQxLp7O1ldauNJr2YM3j16eYujePYRnohkYxX8KwdPadHibZEqdSqHLiw8OsLhSYvTuL7/rsPb0bK2RSWCoiJaTbUqzMrVIp1tY3ilAkxKFz+/A8jy/+3QWEEEzfnqGSr3DwrX0MHOxn9+EBAK5+chPf89EMwZXf3eDsz04yN7pIW29WURwNjyo1Vudz3L04SqYjzdH3D2JaZtDN2UA3dGLJOPvP7MH3fT7+q/uYxhzVSog7FyUnf7jxd6G65eZRLnTXIfSeyjS9UdUG7n+N1D94iuLWGq3gqNmIes+WI66eeBajG6l3bfO5clVGLFpBt5Rdqt4S+FnPIbSWB3QL6fVXCSFUK7kxEmxIih+W0lYTWoz9gd68gAjv3XZtSoXS9sLdNoQIRq81sWN8bwO1XXcQKGvUsasTfPV3lzjx4eENU7ndQItsWPq609vTBOr1hhKEagx7pIBTK9Xp39+LYeqU8hWq5QblXIUbn90mnokzcX2KG5/fxa45pFrjVEtVzv3jN/j8b87z23/1KTP35mnpTBOOR3jvz86y62A/S1PLtPW2sjyzAlKQak+j6Q+yJs/ziaeiquU7X6GlK8OP/+P3142s1rL2rsEODryxR7UnS0lusYCuC0JRi9X5HGbIJN22ma/0XF9l1ft6SKRjeL5PLBHm3qUx+vb1EImFMSwDx3bVtBshlPwNQAhS2SQ//Gfv8fm/+5pka5JD5/ZTXClRWC6RzCa4+IurFFaKgKBzsB237tAz0gW0Y8YG0BwX33vwFCL9EtK5qaRzQlcFPxFRahA/p3TYIgp+AenlQLc2WI1KvwyozHvjE5eleFz3JmjtTzXeSvoFpDcJxBHGrm2bb4QIIY1hJbVDTfjWjDakX0XKvDJz0kKocWNyQ5cmIgxaQCk86tWtt4IWDeYnPrlrUPmbzIOsI4zO9c1MSkc1ywhr05zGJl4svreBOtWaUIqES2OU8xV2Hezjxmd3SLYk1r0n9p0e5urvbtCoNtj/5t6ntipt6UzTu6ebhfEFuoc7yHZv/DCn2pJYYZP2XW3EUlGOvHeASq4KAtWWXagSioVItSVwHY96WTWtzNydQ6KG33qeT71Sp1G3ybSlMC0du+bg+x6rs3lae1s2eHjs2t9LcbmIv6eLEx8eZuTMnvX36/s+EzenWZ3Lk8jE6RxU67r26S3mxxZZml6le6iDPccHaetr3dKkygqZ9O3rYeLGNLqhY1kWM6ML6LpGcbnEqR8fY/fhftyGS7lY5c2fnaRWrtG7t3v9/uw9NUQim+DKb69jmAaurRQytVKN6TuzlPNV5scWKOXL9I/0cvOLO7z1J2fWZzoeePNB0JT210pPLEzVzSdMCP+hCmTinhpN5Y4BRbDPK2WIdRohdHx3JtBl+8ob2titKIrgUV0zOsB4OqdGKRvBJBSBcqSTSjvt3AIkwty/Qcan5ieuqSjU/RZaFELvKMMiLQ6YqtXdXwBCSC2hCqCypjJ9S6mO1OZyXMkUtSjC3LezNbvjamiAv4wUGjLyT1Q2b3+t7p+sI6230MyhJ56riWfD9zZQm5bJ8Q8OE4qEWJpaJp6OsfrIqKxUa5Jzf/IGUspn8pNeGxrwaEFxDbFklDM/PUG1WCOSCLM8tUKjpvw0PM9j+PggkXiYhfElnIZNx8A+dENn8FAfEzemqFcbhKMWR947RKo1iURSKdT47N9+RbozRWtvlkq+uuGa0USEMz85seV7Wppe4d6lccr5ClO3ptl9ZBdDxwZZmVFFwfx8nunbM4xdmeDNPzpFKBqic6B9k//J0NEBeoY70Q2dr//+G5ItcTRdo7BcUk8lmobvq8y752Af/ft7N92bzoE2fH8fufkCwycGSbYkaNQarMzmsMImlUIVz/Fp680yOzpPOBrinT89q4YErI2HkjKgDlJKIqfFEaEfqJ81fgP4QTedC/Qh9Gzg31FUxTb3vlIwSBMav1L0iRZTMrVtNNFSejyw99yiSCYbgPNgDqQsIZ3pQKUB0rm4wYxIqSjUU47vLgUTwF0wT6EFkj/pr4I/r87p3AK3DuYhkCsI69CGiTaa0Q1PYcIv/Qr4M0peJ+sq+Dc+RYbfV+ZO3pz69/rfIY1/vq0P9XSxwHSxSFs0yu5MS1OO95T43gZqUGqN4eODVIs1Vufz9I50E0ttDDoPf/GfBaVcmfmxRaKpCF2DHZuCYyQWJhILM3V7hjsXR4nEwmS7Mxx8ay/Zniy1Uo3CcpHpO3OUVsp89T9d5NA7+2nvb2VlLk/nYBv9+3vRdZ1P//pLxq5NEklEyC0UOfHhETRD20TZbPeeXNtFIFmeXiYSi5BIx1kcX0TXBde/uM3c6AJ9Iz3klwr8/L/9HUffPcDc/QXe+MMTmJa54fxrWfzg4X5ufXUP6fsMHOhDSsnM3VlWZnOk25LcvTRGtjuzqcFHCLHecTk7Os83v7lGtivD4Xf2qekvvsfs6CILk0skW9RMykfvrRBCGfk7V1GPKScRQlNcrayCyKrM2l8FnMBQSEMZDAF6BtxR8JUjHnqn0jV70whtczYqpYO0vwwMjyJI8wA4twAfYR1XLesiDloH0p8HDITRr+xOgzZw/ErQcFJG6D3rQVZKD+zPg47DKjj3kfH/OCgiBjMW/QqKpjFYH9L7GL30k+A795SO2ssFjntm4NuhoRppZCBdjAX3sQj65kCdq9U4PztLwrKYL5WIWRad8Vc/ePr3Cd/rQA0qUJ7+g2P4no9hvtjbYddtLv3yKkIIGnUbJPQMb/bvAKiW6oQiFvF0jEbNJt2eXg/iVthi/NoU2bVZkNMr7DuzsaW9Uqhw5TfXWZ5ZJduVplqqUVxR2u+dbjTp9iQL40vM3JlDNw169nTSu7eLpelVPNejnKsxeXOaoWMDRGJh0m0pVufz2HVnQ6B+GN27O0lmE9z84g5j16e4d3lcab5dV7VCB8fVqw3uXRzFbjgMHx9c79YsLBe58fkdQhGLxcllDrw1Qranhe7dnRx518cMWwwdHdjWK1wz+pF6JyDWM1zVQTcEzj3FkZtvgmiAn0cY/eu8rTD2I4kGxbjAcU46GzS/UkrlH+1NBvTKKkLvVL4Ztd8GXYs60r6ACP9Q8dHWKdT4rJCSC5qHA4oFxZnbl5Tawp2E8PtBliqDomHwFCAbSG8FoaURWhxpnlZr0M8G2e+Komqe5GeyDaT0lV+KyIKRBMygUSgE5jCaFsMPvRMMAA6pzsNttNCO7yGAmGVRsW3qrvtMa/o+43sfqEFRFC9jVFajZuM6LtmuFkqrZUq58rbHdg91sDixxOrcKm29rUQfcuqzIhaGZZJfLODYDons5sfuqTuz9O3vJbdYYPrWHB2720m1JSkH1EcpV1YT0R/j1VErN+gcbGfo2ABTt2Zo729l16F+Pv43X7Eym6O9Pwu+T0tHmlRbipW5HK3dGSLxx+trG1Wb4nIZu9rg3qVxOgbaEEJgWgZDxwaIpWJc+d0Ncgt5rJDJld/e4K0/Po2maTTqNnP35/EcD7vuMHx8N6GIxfRKCYGge0/yic58W8m/FPfbB0IPmkQcJCZIGyl9ZZwkDIQ5hO8tqwnl7n0wTyjZ2hpkTikpRCaYX9hAihjgqMAtNk8pUQNyN9IRMtBqS/cWyDUb1SVFlYiwkvJZZ6D6P6jNwhxA6JmHztG5oftR0T5FpHsNSUJtQI+R4nnOJI3GDSwjhR46DiiqSJlC+WAOI6wjIN31jUwzupHRPwqMpVq3nNcI0BKJ0haLslSpkAiF6IzvoJW+iQ34XgVqu25TKdaIJsKPdW17GizPrnLrq3tYIYOD5/Zt4GujyQgtnWlW53Johkb37k6klKzM5fBdj0xnej0TTWTivPGzkzgNh0g8vGHjsEJqFuTi1DKReJj2vlZ8399wTChiIYTgyLuHuH95jBM/PEJppcwv/8XHzN1foFFtIHSNXQf7GD46sOV7CUUsCNrMM51pBg/vYmFskfxinvxyEbti0znYzrt//hbtfVnsukM8E3viJmeYOhLJ8lyOUCxEe38rUsLb/+Ts+lNMo9YgFAlhhU1m78/z1d9dIp6M0tqXxa67aLpAMzSceoPl2RyZthS6qTN/f4GRU0NPvdEq7vdBwJD2JfDnFFNg7tkoH3NuqMxY71GB+WGjJLlW0zAVf63tVXFZ26vO71xCccqPH1Cwzmfrvcqi1V8CLas2kPpvQZgI8wgy/p+Dv4rQExvc/9Y2l4cWjbQ/V3pqWUfiI8zdW17b8ap8Pfk5SzWLpFXgbF+YSOQ4mKeQ7j11bWNIbXiPjuB6qEtzOxiaxtnefuquS0jX0V/R/NDfZ3xvAvWGCSWWwakfHX3sRJOdwPM8rn96m2giTKNmc+f8fY5/cHj957qu0znYwep8nmgyQihqMXlzmnuXxhBCTeY+/uHh9QzXCpnbGuvHklEGD/ZTXCnx2d+cx7Nd9p3dQ0e/ysSiySj5xWLQ+ZdgaXKF2XvzpDtS/O7ffEEqm6Rjl7IwXXPQexSJTJyj7x1gcXKZgcP9tHSmmbo9Q1tvlkqxRq1YI9WWJL9YYNf+3h3fv1Rrkv1n9uDaLpM3p7l9/v6mAuKeE7v55tfXmR9foJyvku1uYWlmFdt2GTjUh2Hq2HWHaDJKqxBM3ZpF0wTZ3s3c9NNCSg/8RRAdIJzA0OihQC3CwYgpNwhUD11PawGtTxXctFZVvHs4mOkfPtVahJaB8A+C4JqAxi/VNf0y0rmCFnpL6bbX1y5VFu7eR2otCOukUofIBkgboXUERcvittfM1WosVB06YgmWKnXmynV2R9Y6Co9u+7qngSYEUbPZgfis+N5sbcWVMo2qTUtnBqfhkF/a/oP7VAgKdUKITTppu25z68u7xNNxyvkqY1enWJpeIREUvwrLRZyGQ6VQobhSeqxRDqiN4bd/9TmTN6bwPI9bX9xdb5q5+IurxDMxTnx4hL693XTsaiPTlaFvb/e6w9/8+BK1cp3iSgnX2cgTSimxGzaLU8uszOVpVG2WZ1bQdZ1sT5Z6uY4QEI1HGbsyjud5T7w1vu+zNL3C/PgiHQNtvPOnZ+ke6mTvySFCIXPDoN1Ua5JkaxwrrHTaheUCVshE1zUynWnuX56gWqzR0plm+Pggh9/Zz9CJQTIdqfUJ60+C53nYdXvTvwuhq+4/fxHkqqJEHv65eUgV0YQFxgHAe+i1mrICBR73dZLSwXeu4Dc+Vsb/j4EQEYSWCTJkD5VPGSh1yqMnLqrmFZEFP4d0J4KTxEDrDCaWuwijf9vrmXoUtD6qdgmXECFr68x7DVXHoeo4jz2miReL71RGvTqvRkS1dG60IgUUjypQ3XW+3HZO39NA13UOvLWX21/dwwiZjJzaqCNdaxYxLB3D0PFcj45dbdw+fx9BhWx3msXpZW5/dR8B9OzpYuT01lI+UKPBFieWkBLuXhpn+OguSqtlrn18E4Fk/NoUQkC2u4UTHx0hmU0wdXuWXft76RhoY3UuT61c48LPr5BsiXPsg0MYpvLtuPKb6yzNrmAYOn0jPXzz62uYpk6iJUEoYrLrYC+l1Qrdwx3EMnGchose3dpACuDupVF++68+o1FtMHxskM7dHew+sotIIkxLZ5rcYgHnoS+767gUFov0DHchkUzfmWPfGwm6dndw7ZObHP/BIYq5EtN35xk5NURbX5aLP79CcaWE70uGjg8wePBBMJJSMnp1gvkx1fHYOdjO1Y9vYtfs9ek4G5Qw1lHwewAdtI2P8kKLgnlAUQnOJaSXBOtNhDDVuCnnpnqNv4x0xxHm5m4/6U4o32iRVP4ZWmpbTnf9ukILdM+XlI7aPL7FUVpgcOSivEK09ddWOcLNlVEcaXCgLUpqm1JCJhLhRM8Rpgq76GuL05XcnsqYzOf5ZmEOgEPtHezOvJj5lU08Ht+ZQF1YLnLpl1cxQybj1zZakYKyIz350RFW53OkWpPbTmvZCey6HQyljdDW20pbb+smCZzneSxOLmOFTRanVpSB0eF+IvEw8XSMWrlOoiXOjc9vk8jEscLmOiWS6UxvaDVfQ6Nm07evh8Jikdxigb2nh9QQWSHo2t2JY7v0H+hl78khIrEwh9/Zz4E39zJzd46Jm9N4ng+eJJoIU1wtU85XSLel+Px/vMDsvVnK+Qqe69O/v5d6uU6kI026PcXtC/fpG+lldXaVpelluoc7qRSq67z42oa0RkHklwv86r/7hPnxRey6Q6Yzgxm2OHhuH30jPUzfmSOejtL90LADwzRIt6dYnlkhFLb4wX/4NoOH+2nUbEDguR6e66Pr6h67tsvqQp7SSpncUhHHdjYE6vxigbGrk2TaUoxdm+TqpzexqzYDB/uZvDVDz56uDZu1EDpSJJDevcA/es+GdnLprc1HbEP6S0hvFbSYkvqpI4L/tlPYOKivWxgo8XBW/jhoRhdS70CpVjafW2gJJUH07oHWsyFzvrywQKFhYGgaX85M8cPdw9sWkjvicTKRCHErhPYYldDN5SUy4QiaENxYXmIwnWlqor8FfGcCda1cR2iCVGtykxXpGp43QKvrqIzUrjtEE2H2vbGH21/fp16pM3xicH3Syvj1KcauTGKGDBKZGKd+fAwjMFjyfcnFX15hbnQBM2TStasdNMHc+CLxTIzJWzMc++DQJu+RrsEOFsaXMEyd/W/uoWe4C8/1SLbEWZ3P09abZd/p4Q2FUt3QaetvZeruHONXJ8nNF2jtzbDrYB+haAgpJfOj85ghk2RLgtnRBUYvT9DW14rQYGVulVgyQrYrTaY9ye3z9yksF7nw88uMnBqivb9VOfmVauw+3M+uA33YNQe7atO1u53x61Msji9x5N39GIbO3pND7D6ySw0iuHifls4M3UPKEOvQ2/vIzefRDJ1slwoAkViY/Wf3cOV3N4JmF4vOwQ5iqSi+5zM7Ok8kHqFSqFIpVNb12Gv2srqpszS5TK1cx2641Ct32XWgF93YTFNI54Lq9kMi/Qoi9Ob6z4QWQeIh/ZIqILr3kf6K0izr3crhTmvfYMi/ocVa7w/asJfBGORRK9DH4UnzHTVzEMzNrot1zyVsqEBdbDS23UZytRqfTU/i+T6d8QSnunu2DdbJcIiVahUNQSoceqYg3XBdLs3PkavVGGltbWblO8DvVaD2PI/JWzOUc2V6hrto6XwgT0q1Jtb5zVA0RHILCduLQG6xiF1XE1FW5nJc//QWvi9JZOLc+XqUtp4sVtiiuFwino4SjoVZnc/jOe56oL53aZS50UWi8SjLs6v07+9RU1eEIN2WIreg3O94JFBHExHe+OkJHNtdz2Y1S+P4h4cp5cosTi0zdm2SvpGeDeqT2fvzlJaLJDJxNE2Q7kjTOdhBJBZGSsnAoT6mb89RLddJtSXXbVzbelvpG+nm5A+PcP+bCUq5EnbdZnlqGcMySLbEKeXKrM7naO1u4f7lcdr7WzFDBtneDPNjS/QMd/HOn7/J/rMP6IBqscb1T1QRdmF8mXAsTLYrg2mZtPdvthTtHGjn3sUxwsMhCksFLvz8Mu/9+VsMHx/EqTuk2pO49sYMNd2epHtIbWyhaIhdB3rJLxVZml7hwJsjm1Q/ysO5FMjmfKVzfhhaO5jHg6LiELjXFG8dTO7WIn/wyPl81WLtr6jGEOskIvQeaqrJt+MWd7i9g69nZ/AlHOvo3Db4ThYKGEIjG4syXy5RthskQ1vzJMc7u7i7uoL0YTibZbpYYCKfJxuNsjfb+thsfA2juVUWy2VChs7XszO0RWMkQq/HLMVSo8HFuRkarsfhjk66Eq9HY85rE6jnxha4d3GMaCrCgTdHthwvNXtvnvuXVMPE5RnlurZ2XCQe4cxPjlMp1oilotuqJ54XkXgY3/cprqgvcjgWDigDL5DMqg9q30g3Vz6+SaVYo3OwfYM1aiQRoZwrszi5RL1i06jZHHhzhHrFZmU+j2nqm3xB1qAb+qZpLrqhMz+2xOz9eUzLYHUuzxt/eGLd2tSyTDRNw/M8yoUKrb1ZuoeUR4UQgtN/cBzP8WjcaFDKVViZXVUufKXa+sSZEx8dYerODFd+e5OJmzPUKw06d7czdnWSxYllljpXaO/PUlgpceOz27T3tZFqS3LmD05sonHshqMKk8ko1XI9oDcUHpUdrqFRt5m8Oa24cV1w7AeH6N/XQyVfIb9cYjjQY6/fE13nwNkR9p3ZQ26hwNXf3SCWirH/7N4tZ1qqLsYDqosxsD/1GxcR5hBCS6mCsdEP9CvLVP92oKSoKdXHo5A1JaPT2oMJ5rMIo4e1LsKHUbZtbi0vIYB9rW3ErBcTyNticX48tAeJkshth0TIYjTvIOsSU9MI6duHhbBhcrhd6bWLjToX5mZJWCFuLi8RMy36UtuPVVuDlJLJQoGa61C2bU50dj1ToHY8j6rjEDVNzG0GbjwtbiwtUnNdIobJxflZfhzb89h7923htQjUSh1xj2RLnHKuwti1SQ68sbkgU680gnmCUWqVuuJnH6rHWGHriV7Rz4tMe4pjPzhEfrFAtruFcCzEzS/uUK80OPDWyPoG0dqT5c2fncSxXeJpNUfP8zxuf32PxcllNF1HupKBg71IT+LaLic+Oky1WCMcCz21zrtSqCiv7IhFfrEQ8Lnqw9s93Em1XGP8+hSu7TM/sczqfH59mnkiE6drqJNYKsby7CoT16fIdKQ4/I6SqNUqdSr5CqD46I6+VlzPZ+rWLOVchXrd5t6lUTQDvvgfzxOKhune3cHKfG6Dc98a0m1Jkm1qunksFSXblcbzPO4GcyFbOtMceGtkXWMuhGDgYB93L4ySbE3Q0pGmuFIi1Zrk6PuHHntfNE0j25XhzT86hef6j23O0YwBpN6hpo57s+B7SHsZQh9sGEGl5g+eVd4fIoYwtjAjEiEQ8UB14YG29UAIgPOz09QCFU7NdXi7f+Cx7+lpsBPN8kBaJQUV26YvlSJk7Cws2J6a8BM1Taq2TcPbWcdhTzJJ3XPQNcGebJb5Spk92Z0O0FWouw6fTk5SdRxilsW5vv4dr/txkEgEayqu5z7dC8NrEaiVLE0GLcUP2V4+gu6hDhYnl1iZy9Gxq3WTL8e3hdbulg388YkPj2x5XCQe4WFtyepcntn7C2S7MrT2ZOjf103XUCe1Uh1N1zAtk1Trsz0J7DrYx9WPb1IuVNm1v2fDE4Vu6Awc7OPXvs/uo7toVBtc+c11Dr45ss4xtve3sjixRDQRUUXIcyOEIxalfJlLv7iK67iq6aVhUy157D01xPLMKuF4mERGBd2+/X0UFgtM3pwiFDaxIhbx9ObfkWEaHP/gMI2qTShiUVgu8uX/dInRK+McefcAy7M5FieXN7Tb9+7t5vA7+7HrNkJopLawWH0cdrrxqS5FF4gq/w25jJLFqa+K7y6BzCH0NjRr+yYWIQwIncVzF/CkiWVsbR0ASu6WDIXwpaRiP7/szfV9ZopFPOnTk0g+MYBpQjwTT5wJh+lKJFgol4hbIXoSm38nvpTcXV0hV6sxkErTmUgQt0Ic7+qm7rg4vkdLOLLh+JrjEAq49e2wUq1RcWzaY3EWKmVWalW6t7j+0+JgWwfnZ2eo2DYnurpei2waXpNAHYqEGDkzzN2LY8RSEQYP79ryuFgqxht/qLr3wrHwUxUyGrUG49em8KVk4MDOmzVeJNasl6UvyfZkSbbE0DTBwXObOdM1XfBOmjk816OlM81bj8kazZBJLB2lnK9QL9coIvjdX33O/rN7ae9rpb2vlVN/cAy77iCl5N//33/J/PgijXqDTHuaI+/uZ+7uPPvO7KGwpGifkz88wszdOSoFZVO6MrPKzN05IokI6fYU+9/cu+l9rczlWJxcItWWpGuwAyEENz67TTgewjANJq5N0bm7A6Ft/N2GoyFO/ugo5VyFaCK8ycTpUTRqDSqFKpFE5LFT2reCMPcgG18GNqGDSHcWSQ1IqIkrwlQzAEPvP3ayeMXR+JtbeZZrVY532rzdv3Wj0eH2Dr6Zn0MgON69c2e77XB9cYGxfA5NCObLJU519zKez+H5PgPpDBHTZKFcYqKQJx2OMNyS3RG3/Ch0TeN0dw8Nz8XSjS3PMVXIc3NpkbgV4qvZaX4wsJtEKMTZnj4m8nlChsGudBpQG8xXM1OsVKvErBBv9vYR2aZJJmQY+FJSbNSREiLGi6E6E6EQPxh8vI78VeC1CNSgzHvWHsUfB8M0nsk86dZX91idz6PrGqWVEmd+8viW3peBli6VRS9OLLP7cD/Dxwe3DMSF5SJXP76J53gbug+3wsSNKUavTOB5Pi1dadq6s3Tv6dw0JFfTNH78n3zA+b+/zNTNaYZPDhJLRbn5xR1ae1R335pnxhd/ez7QJ/tUCjWi8TA3v7wLQhBLxRAIfN8n05Em0RLHc30qhQp/9//4FZFEmJ49XeQXC5sCZKVQ4fJvrhGKhJi5O49pmbT1ZhG6Rtg0aN/VSn6hQO/e7i3f85pJ1ZNQrzY4//ffYDccTNPg5I+OPpVuXmgtEP4QpKuMkdyrgAV+joYbwbTa0VgOTJK2D9RfTE9we3WJbDjKL8fusyeb3dI1ri+Vpj2mPFgMTaPhuli6/syyt8VKhZZIFFPTWKpWuDI/x0yphK4JlioVTnT38NXMNBHTZKpQoNCoM5DK0BqN7uiadddhPJ/H1HT6UynCjwmSNdfF0DTilkXFsXF8D9f3MTSNA+0bawW5Wo2lapWOWJylSpm5cmnbTL81GuV0Ty9LlQqdMSUt/C7jtQnUzwO74TBxfQrHdth1oG+TPzJAOV8hkY6hGcrA/mmntbwIaJrGyKlhRk5t39QCcOf8fQxTJxILc+uLu7T1ZrcusNUajF6ZIJaO8c2vrrEwvsjqrnZ832fXgc0Frva+Vn7yzz/g4i+uUCvXcW0PXdc23YdIIoLrejgNB13X6D/QT6otwcjJYSZuTLE0tcKuQ32MXplg/9k9mJbJvQv3KayUGL8xTWm1zKFz+zddv1yo4jSUSZVdt6lX6wAcfns/N7+8S89QJx/9R+9uklXuFLVKHaSknK9i122yXS2szK1SXCk9dYPTmq+FlAUgASLCZHGWaysull7nbE+WRDj92HPYno+GhqnrSKkojlKjQcyyNmWfIcOg7jp8PDHBcrVKOhzhVE8PqW3UF4/DYDrDjaVFpIDd6QwLlTKZSBhD01mpVqg7Dj4QMy2uLy6yWKkwUyxysK39iVyxlJKvZqYp1hu4UlK0Gxzv3J7W6UummCkWWayU6Y4n8H3Jz0fv4XgeI61tjDx0PStILsq2jedLwk+gbHoSyS3plu8ivhOB+u6F+yxOLmOYBsXlEm/84clNwWfo2AA3P7+LlJK9J3e/1iJ9wzKoVxuA0gFvB03XsOs2k5/PMDs6z+G39xOJh6kUqlsebweBd98be7j15V1c1+PwuwcQQuA6LpquXAQPvDlCeaXM6NUJIvEIQ8cGGDk9TDQRIdORwrVdWjrSFJaK1CsNfMdndaGgJJKWSSQeJpaOblBwrC7kufrbG1z57XWufHyDA2/sXef5k9kEb/z0+Z5w5sYWuPWl+v12D3UghEZ+sYCUbAjST71B64Pgf0XNzjNRbqEleZBcrchErZPDycfz3m/09DJZKFCo1zjQ1s7NpUWuSUl3IsmJru5NwXqmWGK1VmW+XObywjwLlTI/Gd771NnicDZLNhrFl5KWSIRkIcTlhXkksCeTpSUapSueYKZYoGzbvNXXjyYEU6XiEwO1LyWFep1sNIbre+SqW3/W1hCzLN4bGMTxPMKGwZcz0xhCIxUNcXt5iYFUep1DT4XDnOruYaZYYHcmQ1fTs3od34lAvSbJMy2T/FIB3/M3Sdg6d7WTaU8hJdt6F78qeJ5HvdIgHA2hGzojp4e5/fU9XNtl/9kHI8CKqyU81yfVmkDTVPFRaALflyQzCZZnV2ntaaFnz+YMZ/LmNPcvT2CYGkfeO8jJHyqzHddx+fl/81tGr0zQs6eTD//pu0RiYc79yRuc+5M3Np0nlo6S7WlhdXYVM2yR7cpQKdawwhaGrmNFLWLp2CZaZ/zaJLVKjXRHCrvuoBlq3b7vszCxRL1Sp2NX+zO39o9dnSKRiaMbOnNjSxz/6BCl5TKJbJxkVn3hZ+7OcffiKNGkKphuV6cYy+e4sbRIwrQ41dNLJPQBQqtS9BeIeTqOjBI2npzpZqMx/tNjJ2h4HndXllmuVsmGw8yWiuzNtpJ8RJJm6hoVx6FsN0iFwliazkK5/NhAPVsqcn91lbZYjJFs6/om9PBrdqUztESiSCQJSzWpnO7u4WBbO22xGMvVKhLY37o9xbYGXdMYzLQwurqKFHC0Ywd0paatF+UihsFSpaJswDV902b1fcqSnwbfiUA9eKiP65/exverDB7p3xSk1/CirE1fJBzb4fJvr1NaKROJhzn+4WGiicgGFz6Amftz3PriHgjoHGznwNm9VApV5ieWSbclGD4+iF23Ofuzk+vv0/d9Ri+PM317jpl7c4y8MYxTd7l/eXxdqXL/8jif/c2XhCJh8ssF+vb1cPS9g9uuV9d1Dr+zf70T9OrvblIpVGnpSjN4uB9d1+jb10O6PYVdt9flktFElGqxhuf6JFsSGJaJ53rM3J3j1tf3sSyD2fsLvPHTE89Ug4gmw9z/ZgzpQ+dgB+nWFOnWB5reRq3BnQv3SbUmKecDCehZNVvR8zwufnGL6zcnaBtow+6O0BZPUGzUubOyzLHOLqKhKKe7Q9zPrbKnJc7gDlUSIcMgZBikQmGmigWoq8AV2kL325NIcrC1g4VyhZZIBEPXyES23xAK9Tp/ffsmq7UaDc/lT0cOcrRraxriUZ2yEIKYZfFGTx/z5RJj+RyzpRLFeh1T12mPx7cNmAfb2ulLKm35o5vNk7CvtQ0JVB2bfV1tL0z//F3HdyJQt/W28tYfJ/E8/6kr/M+Llbkcdy/cx4pY7D+796mvvzi1TG4+T3tfG8uzq6zM5enevXlg6uzdeRItMaywxeLEEntODHLldzdo6UgzeWOacq7CO3/2Jncu3EfXNaSE4mqZ3EKe9t5WcksFlqZWCMdCpFofPFJe/t1Nbn89im5paFJw7o/OPHa9jVoD1/GIJiIUV0pUijWyXRkKy0XaerMMHR1g8uY0n/3112iaagtv7ckydGwXruNy/fPbxNMx+vZ2k8jEuX9pDM9xCWdiVItV7LrzTIE6FDaplxsIXSClv6lxRgQG/r639rMHAWJucpnffnGNZFuSby7cIeF1kd0XBwnaQ03XnYkEnc/YqTaYySCRlG2bgXRmS8mcrmkc7+5mOJtlqapM9tui26tbyrbNfKlEXyrNfKnEl7PT7GltfSo7UVPX8aRktVZDE4Jfj9/nZFcPk4U84f4BstHN9R4hBKnws33PQobBscdw2k1sjSd+I4QQfcB/A3Si7Ln+Ukr5X7/shT0tXnajy1bwXI9rn9wkEg9TXq1w7+IYh9/ZXETzPI+FiSU826N9V+t6xjt2bYLrn91h/PoUvlRfVCtssjKXw7VdMp3pdT10pivD+NVJdENTreC6TqNm0z3UQbYzje/5TN2axnN97lwYJZ6Jkm5NMXZ9ksJSiUa5sT5t/eHBAdV8mXRbEs+XSMclnNj+C7gyl+Pq727g+5LevV3sOtCLaemszufxPY9UawLP87h/eYJ0exLXVtl7a08W0zI5dG4fB97ci+d6mJaJ3XBYml7l7sUxQHLyh0cJx57tqadcqLLn5G6ssEVuIY/nemjWQ4FaE+w9PcT4tUnSbSkGDj0ottqui+/7alSUadGdSFJzHNLhMHuyjzfF3yl0TdtxU0ciFNpRp15rNEprNMZEPsd8uYyLx/9w7Qp/uGeE9qeYouL6PnqwkYnAN7rquNR32MDSxMvHTlIXF/jfSCkvCiESwAUhxM+llDde8tpee/i+j/Slaus29Q0TzB/G2NVJxq9NoemChYkljn90mKWpFS78/Ap9Iz3ohk4lV+GNn52gVqpx+6t7FFfKCB3e+dOztHZnGTzURywZwXVcOvrbMAydPccHuXtxFKFpjJwa4pN/+yX5xQLTt2dp7cvS2ttKcaWM9H0Gj+4i2ZJg8GDfhk1t39m93P76Pq7jk2pP0rd3+2xn8uY04ViIcCzMzN05Bg72ceKjI6zOqQ7Dls4MUkrCsRCVQhXXcWnr2RjoNE1bD6CVQhUzZHDmJ8fVCLL+1g1ZsOu465p5z/Vo1GzCsdAm6SGohpibX9xFygrdQx0bZjjOjy9w68t7oAkOvrmXtl4VMB3bYblYxspG2bWnh6mxeVr6s3xwbD+6pnNreYmbS4vsb2vfVs/7KhEyDP5nR4/z8cQ438zPYuo6E4U8vxgb5c8OHKTmOCxWyixVKxiaxt5sK+nwZr67N5lktlhkopAnYYbI1Wq0xeK0Rl5NQ1kTm/HEQC2lnAPmgj+XhBA3gR7gex+oTctk7+kh7p4fxQybDB0b2PK43HyeZDa+nu3dvTjKl//uAre+usfdC/c59sFh9p3dQ89QF5d+dRVfSvJLeRp1hwv/cIW3/+QMsVSMrsGNlEjv3m7a+1sRmmD23jwT16bILxVJtSVZmFjC91xSrQnS7Un6R3oo5cqIR2R+p398jEx7mtn7s/i+cv0zQ+YGw6s1xFJRVufzOA0XK2KhGzpW2NoghxRCcOS9A4xfm8IwdQYPb29YH02EMUyDarGKGbbItD/glMv5Cpd+dQ2n4ZDpSFItNbBrDVKtSY68d2ATPdI12EEy0HTHMxuHz97++j6JTBzf97l7cYy23lbK+Qq/+ofzXKvkSGXjHDg6yI9+fHrdN+IX99XgW8dzcX2fM71b+Hk8BVzfZ7KQx/F9+pLJ9Q7EfK1GrlFnIJXecRbccF0mC3l0TaMvmeLdgQFG8znKth0UC2G5WuXi3AxjuRyL5TInerpZqdX44e7hTd12YcPkWGcXq/U6ccvC8X2OdnTuqCV7tVal7rpkI9FNx7u+z73VFYqNBkOZli1plCZ2hqciA4UQA8Bx4MstfvYXwF8A9Pdv/+V8neE6LuPXJqmW6uw60PtES9Rapc7qXJ50R4r+/T04DYdaubZJTdC9p5PbX95DUqFzsJ3Zews4tsfBc/sYuzKB0DSGjykviPa+Vu5eHKVSUGZOQhMsTa+gGfqW/LcVtlTR8Ooke04PMXt3Dk3TiKWinPzREaQnGb0ygd1w2ffGnk2KF13XGTk1hF2zyc3nAcG1T25x7h+f2VSU3X1kF2bIoF616R/p3rZoG0tGOfjWyBPutirunvjhEXILeWLJ6LoBFMDMvXmQkpbONHcujZJIx+je3cnyrNJFb72RbOZzhRCEoiFqlTp2w8G1XRYml8gt5Fn1bFpbErirdZbzJfRuQcgw8Hwf2/fIhCM0NI3aC5iavdYtaAiNTyfGaYlEWKnXaLgue1pa+bI8xQ8Gh4jvwJDp/OwMq7UaPj75ep0TXd38ZGgPv5kYJWaG6E+m8KVP2baZLBZYqVbJ5nO0RePUHGdLWqXk2GhC0B5Pslip7GhS+GypyFczMwAkQyHe6d+1oTg4llvl1vISUdPii5kpPhoceiF+HFvB8bz1hqFXgarj8M3cLDXX5VB7Ox0vWFq447smhIgD/xr4X0q5eQCblPIvgb8EOHXq1GtkZ7JzjF+fYuLmDJFYiMu/uc6bf3RqwyP0o7j5xR3KqxUkkm9+fZ3+fd1ourIdfXgyds9QF8mWBK7jBdI6wfVPb+I0HHpHutl/Znidi+4e7uSdPz3LpV9eRTd1Vay8OMr49SmOf3B4y81DCKFkbVJS78qQyCToHGgjt1BAInnzj04xeGjrtvw1OLaDYRkYpk7N87ccC2aYxhPP87SIJaNbNihFYiEaNRu9WCMUUDVr+vCnrUccfmc/9y6Nce/iGLF0lC9++Q3S1KFuk/d9pPAZjITWO+x0TeNAWzvXFhcwgjbp58VKvUYmHEEXgq9np9mbbaXiOCyVVdGw6jrYnstW7noPww8Kf9loFNf3WQl0zHtaW+lMJKh7LplwBNvzWKlVsXQNHfh6ZpYzPb2cn51hf2sbRbtBazRKS0BvxEwLx3MZza0SNc0dqTkWKxWipkEyFGapUqHmOhsCddVRftgJy2KmVOTu6gqt0SgdQRfmdmi4LpoQO1aETORzXF1YQNc1TnX10BZ7vL3Ay8CNpUXyjTpR0+L87Cw/Ghp+oYqWHQVqoUYk/2vgX0gp/80Lu/prhlq5RiQWIpKIkFvI4zreYwN1vWITjoeplWpUcmUyHWkKy0VWZlc3BGpgQ7fdyOlhzLDFzN05uoc66N37wN9BCEHXYAfZf9bCyuwqNz69TWtvluJqifnxpW0D9ZF39zN5c4a+kW769/eimzq5hQK6rpFu3956srBcxHM9dh8d4Pqntyjlyuw9PbSJWpgdDSxmH2ND+yLRs7dL2bLmK+w7u4e5+/NM3Jxm4GDfU5txrWX4K7M5rJYId6dmkA2fZF+Go1aUrqEOhvu61jvjAHZnWuhJJJ8qYDwOQ+kMX85MM5pbpe66XFlcoCUSIRuNsVgp0xGLbdmFWGo0qLsuqXAYS9cDA6UM93OrSAmHOx7QYYlQiAQqwBqaxps9fVxbWqQvkWK+XOZEVzczxQIzpSKZcIRby0u8t2sQIeDTyXGuLS78/9t70x+77jS/7/M767333H2tfeVOkdRCUa2WWq1eZqbdPTP2JC/sDGLHCBLnRQzYQIwgsf+BAAmcBIiBwHACBMggThzHCzLjeGY8PaNeJHVroyTuW+1Vd9+3s+bFubxkqarIIllUUeT9AAJULNa9vzrFes5znuX7RVcUTqYz+1Ldyxh+I7Nr2YR1bYfexlw8zmarwVarSbXb4Va1zI1KmZfHxpmP7y7je7Nc5nKpMLhBTj006Dquyxf5PPFgENOxuVws8F1jb6XCp4XjushCQpEErudy0JnqfqY+BPC/AFc8z/uHB/z+zxSzJ6f57KdfUs3XmT4++dDFmGOvzfPlL6750xdHx6gXG9iW/dAVaEmSOHJubtv0xVfRdJXUeAItqFEv+qp14cTeASoYDu7wW/yqQ8xXWbu+wbWPboIHudkMb/7O+eH57qff7XPtV7eIJsNs3Nxi9eoGL33nJPMvTe/a2DsIZFkeZu/tepv8csl3oLm5RXYm89Dv7asoqkIkEeKjX16janZ4+bfO4o2HOTsxtac4/P2P6Z7nUep2MB2HdNDPZpsDgf39jMPNxhNstVoIIDsV5la1zCtj48zG4tieR0hVdyx/lDsd3l9bwfU8orrOW9N+aeFUJstEJIosiT0F/gFeyo2hSDLLtSohVaPR72O5LkFVIxUKkW+1uFkp8auNdUqdNrqsoMoyfcel3GkTisUf+D1NRqIEZuboOTapYHDHDS0WCPD9+UVq3S4frK2QNSK0zD7FdnvXQG05DldKRVLBEH3H5r3lJUKqSkzXOZHOUOl10WSZyUh0eCMRQqDJMl3L8n82h1QHP5nJ8qv1Veq9Pudy22/6B8F+Muq3gL8OfCGE+GzwZ3/f87w/OtCTPANEUxG+/Zdfx7acoYPKg0hPpnjrr7yO54HZNSmtVwgnjEcOInuhBTRe+cEZ8itFjGiI3OzDN8fADyr1UsNfSEhF9vw+Nm/niSQi6EGN4lp5ODa3F72uyerVdTIzaZa+WEEPqEwff/KywMPod008z3fR6TZ7tKqtR77G/W6fdrNHZixOJW9Sd0zSsjycB272/ZX9vcbiVuo1Pt3aBAQBRcZ2XVzPQ5Vk3pmd25fYf1TX0QdZZyZkMB2LE3hAkN9oNujZNi2zz1q9wal0lmzYLxvsZ61ck2XOjo1xdmyMrWaThtknok3w2dYmtyplQHC7WiOiaiybNXpOh3TQQOARUvdXXnpYg1CTZVKhEKmQQb7VAgGnMjuNG2AwnirLtC2TrVaT9XqdN6dnKfe6/Murl8kaYSzPoW2anBy8hiQEF6amuFwsEJMCvJTduYPwdRDVdX4w7+uSPw15iv1MffycvR07nzseVZ3vbmDTdJVw/OBrY+G48cive/PTO6xcXQMEC2dn9qwrJycSw2ZmLBPZ9n27rsvGzS0a5SZj81mOX1jk8/cuo2gqnus3KMOJENPHJ7FMiztfrNBpdpk7Pb3DAf5JiSTDRJNhvvzFVRrlBoomk5lKPVTq9H76XRPXdjl6coZYMkJYi3Judp6QqnK7WuGjjXW6ts2rY+Oc2WUtOt9uEdZ0wprG1VIRQ1WZjsXJt1rU+719BerFZIqOZVHv9XhlfOKhmXg0EODLQh5VknE9l/VmY8/JkL5tc6tSGbxPctvTQN+20RSZ2aCvq7HZbFDqtJGEoNBucTqbpWWZOK7L2dw4xwZaIQeFLElcmJyi2uuiy8qeyzKSEHxrapqfrdyh0O7Qsi2ulUtkDIOubZEKhWiZfVYbDY6nM8MnkHggyLenD7Z38jg8Tf2g52Iz8Vml3ej4Ho4BjfQeCngHjed5rN3YJDmWwHVc1q5v7Rmo51+aIRw36HdMJFmivFEhOZ5AkiQKKyWu/uqm72u4XOSNn7zGb/6Nd/npP/05l395g3g2Qq3QoNPssnFri7Xrm/c1YV8/ECs0x3FYurRKvdggOREnvhZj6tg4rXqH5ctrnHrz4ZMldzGiIaLpMOXNKqosOH1qbhgoP9vcYLVRw3PhX12/wkIiuSPwjhkRNpobtK0+OSOM5ToU221kSRDW9reko8kyrz1CYzITDLGYSBJUVDRZxnJ3n9MH+GRrg3LbbyzW+t1h4OpaFj9bWaZrW5TbbbLhMBuNBicyWRRJ4mrRpm1ZnEpnOT85ta8yTq3X5WalQkhROZpK7auGr8oyWePh44exQIBUyODVcY16v88X+S0WEglyYxNcKRX5cG2VrGEgCcG7c/OPNeVxGMqZT8oLG6hd16XfNdF0dc8xsyeh1+nz63/7GSuX/Nnmk28e451//1sP1Rtp19u0G10iyfBjNeyEECTH45TWKuB6jB/Z+1FQkiRyMxkuvneJ0koZF5g/M8ORc3N0W11UTcGIGXTbfcyeSSgSZPbkFHgQy0ZpFJt4rkuv3UcPan5jtd3DsR04gEC9dafAnc9XCMcNbn26RKPcZPXqOmbXRJYlTn7r2L5/4WRF5pXv+SbAekjfdm0VWabZN4nqOgGh0BhIkd7PTDxOSNMwHX9muGv7mXEiGHzohMTdGWrTcZiJxfe94h3SNF4dn+BWtYIqyRxN7r0lWe12iQ/KIbVeb/jnlV6Xnm2hSTJ3ajUSoSAd25/uiAcCnB0b47XxiX1fR8txeH9tFVkI1iwbD4/T2Rye53GrUmG1WScRCDAfTxLVH8+lPBsy/CkOSeKd2Tm+MzOHB3y6ucFENEIiEOLTrQ1eHht/pJq07bp8srlBod1iOhrjzAMMf581XshA7TgOX/78KuWNKqFIgHPfe+nApxi6rR7NSgvbdollor6zyXKJ6RN7Z1SNSpOP//hz8DwUXeX1H708bGh2W13Wrm+iaDLTxycfWJ459a1jFFZKg6Cd4PL712hWW8yenmZsdnt90LEdKhtVUpNJbNOmtFriyLk5crNZNm5uUd6skhqPDxukU8cnqRUaNMst5s/OYMQMJhZzrFxZo15qcvTV+QNTJ7T6NrIq+5uODZlYKoLnuMTSUWRFxuyZjyS0JSvyrmWZb01Os9FsgucNrKJ2L2OkQyEq3Q5/sXwHz4NXxyce2My7y7VSkRuVMqoksdls8vbMLB3LwvU84oEHOxWdzuZYSCSH9du9OJHO8EUhD/iOMXcJKSqu51HtdhECDEVjJhZjLpYgaxiMRfweRmFQwsmFww/8nmzXxXIc4iHfQKJt+cbE5W6XL4t58OCnd26zmEjyyvg4Z3OPrutx94mmbzuMhcPIkuQ3VAM6TcvEdBw8191V2OpBbDWbrDcb5Iwwd2pVJiLRQxnlexxeyEDdKLcor1dITSSp5KsUV0rMnJw60PcwYv588FJ9hUBIJzkWR9EVHMdBknaK9QPUiw2EgMRYgspWlXa9QyCk47ouF//iMv1OH8d26XcsTlzY23xA1dSh3+Ctz5fYulMgnAhz5f3rxNLRbTclWfHrvVvLRfBg8WX/kTkUCXLhx69i9iyC4cCwbBMI6bz8/Zcob1bRdBXbsrl9cRlVU3Bcj8RY/MAeK3NzGbaWClTyNXKzGYxYiFufLSPJEpGEgXpATvPZcJi/9tIZGr0+8WBg2FD0PI/LxQJL9RpjRphzY+N8urmJIslIws/wfvPI0R2v53oePdtGl2VkSaLc7RLTA+iyzCdbG1wvFambfRYSSY6lUg8NZrutr9uuy41yiaZpciSZZCGRHJYW7r/RJIJBvj01w61KmY1Wg1+tr3FhcopzY2PDyYl8q8n7a6uoksz1SpnvzS3smvV3Ld81fDISZb3ZQJEkjgyyfMd1EUCx20aXZeJ6gKVajWOp9A4HmLs2YLFAkCODm9D9CCF2OOFIQvD9+SP88e0bdEyL31w4/sjO5UL4zTbXG5SQvhnJNPCCBmpNV3ypxWYX23LRggcv6KTpKm//3gVycxlqhQYTi1kalRaXP7hOOGZw9p2desjRVATXcSlvVlBUhVDU/7zruHSb3YF0qEWj4nsWPqzW5nmeXyZQZVRd8fWfd9EjOfnmMcbms0iytG07UNXUHVMgruvy+XtXqOZr4HlMD1bTszMZWrU2hZXSgU29BI0Ar//oZWzTRgtoeJ6HETOw+taerjePSzwQ3KGDUep2uFEpkwkZrDbqg0UNPxADO37RG/0+tV6Xz7a26JgmuXCYN6enWUgk+WRznc1+H9fzsPF8/2bPY7lW51Qmt2ut1fM8yt0OipCGZY273CyXuVYuEVI1Plxb5eWxCXqOvUOfw3IchCSomybncuMgoNRu0zLNYVOv3u+jSv50RrHdom2ZBBWFO7UqpU6bmWicsK7zs5Ul7IEBwFvTs4Q1bdi0TIVCjEeibDQbaIqMJEnoioIqbc96W6bJrzfWCSgKG80muiwPXdAfxlQ0yt889yqCx2vcjYUjzMcTbLZaHEumv1FaJi9koDZiBme+c5LN23kmFnNkZx7Nqv6r2JbN0uU1us0Osyenh0L1WkDj9JvH8TyPS7+8xk//j58Tz8bIzqRYubK+Y+45lo5y/kcv02l0iaYiw8xXURWmj0+wcmUdIQmOvrbAJ//uC+qlBtMnJlk8u9M01exbfPmzK+RXihTXKmSmUhw7v7CrML8sy6QnU7iuy+rVdSr5GuMLuW2+hY7jcPXDG6zf3GJrqchLbx/H6lrUyw30UIDyVhXXdpjPHqx8gCzLyEH/l10IQXb6yX5Wu+F5HoV2G9t1ieg6hXYLTZaHj9ZC+AFvvdFgKhplrd7AA87f1xgsttv8cnWZi/ktlus1jqfSdG2L+USCuXiCmK5T7XX4eHOTerfLVqtJvd/nWCSCLAS261LtddGkeyOD//zSl/x06Q4BVeFvnH2Zc+P3FqPalklIVYloGtfLJf7l1UtstdqEVJXfP3OW6Vgcx3X51foa5W6H66Uik9Eo+XabRr/PXyzf4e2ZWZJBf1PwerlEod3C0DSims5Gs8nF/BYRTfPlUxMpLMcha4QptFtYroOuKNyuVrheLpMMBDg3Ns7pTJbVRh3TdpiJx+kMHMXvlm0sx8HxPEzbYbPZJBsy9h2ogQfWlCvdDp/nt9BkmXO58R19BlmSODc2zrl9v9uzwwsZqIGh8/ZuOLbD2vUNrL7FxJHxh7qOLF1aZfnyGoGQP/Xwrd95bZiJep5Hq9Zm/cYG4YSBbdkUV8ssvrz79lQ0Gdmx1Qiw+PI84ws5JEUmv1SkXqwTz8ZYubRKdjq142tKa2XWbmxS3qhQ3vSFh+KZ2AMzkeJa2ZdIjYf48udXMX4cGo4GVjZrbN4ukJ5MsXJljeUv14gkwxx7bYHMTJqtO3lWrqxz/ePbuLa7bdvyWedWpcIXxTyeB5vNBlOxGJ7ncSSR4kgyxVK1Qq3fQ2k1WG81mIvHOZHObisPbLWaCAGyJFCEhO24lLrtYYC6K11qux43yyVyhm8+MBWN0nccPtvaoNBq4wm/9l1otfiDSxeZNKK0LZN/ff0qL+XG+KKQZ63RIKprWI7Lcr02rEEng0FqvS6fbG4wHYtT7/UodztkjTCeB8v1Km3L5MLEFB6Qb7XQZIVPtzYwHYf5eIKFRIK+Y9OxLFQhEdZ0OqaFMqgTV7odJCGGCzRfDjYst9ot4nW/1HEincH1PD7Z3GCj2UCVZb49NUMsECAWCGCoGu8t38FQNVabDeq93p4je57nsd5sUut1mIhEhyvvX8X1PP7szm1uV6qYrk252+F3ju2UHP6m8sIG6gdx6+ISq1fXUTSF4lqFCz9+5YEbeHdXz0PREJWt6nD13DItvvz5VYqrZfLLZbIzGdaurzOxkBvWxF3XZfN2nk7DF2Eye5ZvzDqR3DbiJgYO4ACyLPllDNsvY+xWAmjX29z4+Da1Qg1JkVF1lfUbm6TG985ezK6JpEgEw0E6jS5W37r3/pJf4PNcl+njk8yeniYzlSI5qEk7ti/IH01GuP7xLZLjCUIRX5a1sllFUmSSY/FtZ7VMi26rRzAceOCizdNmq90krgdQJInP8xucyeYGYvod3pmbZzGR5E9u3yQTMriY3+JWtcxGs8kbk1Nk7taFdZ16r49AEA8EEULw2tjkDt+/hURy6KxdaLV4b2WJrmVR7fZQJImtVpPVWp2wroEHG+0mIVUloCgUO22WalWyRph8u0k6GPKbeQKWajX6roMqJBbiST7Pb3KrUuFOrYrluLiey+sTkxRabSzXxfFcksEg10pFupa/Wfh/fvE5pV6HqXCMHywuElAUCu0WacNgIZkkEQxQ6fXIhEJEdZ1Gv4eHn+UKxL2SENAy+2w0G2SNMLVel5V6jTMBf8riaCJJtesH3nK3Q8eyiAUC9GyLT7c2afZNTqbTviFCq8mv19cIKApLtRrfm1vYdWa92G7z2dYm6WCIgKJztVTiJ0e9A53qaPb7XC4WAL/Jux8BrYNiFKh3oVlpEY4b6CGdylYVx3YfGKjvrp5XtqpMHZsYTj1UNmtUt/xGWKfVIxQL8u5ffctXoRsEpvUbm1z76BaarvLlL64SDAdRdYVYKsIrPzyz6/uOLWRpVJrUCnWOvraw60KMFtIYm89imxYIf+EjknrwHGtmOs36zS0qW/4UyN0SDkByLM7cqSm2loosnptl4dzcrjeI+zN2z/O49IurlNYqePiNyrsz3f1un0/+9At67T7BsM4rPzhzaFZpE5Eon+e38PCYiyep9LoIIXhl0OTTFYX0oE690WxwfmICXVa4U6uRMcJ0LIsbpRJCwGQ4yo+PjJMNG4yH994KBfiymCekqoRVjY83N1CEwNB1yp02qWCQ78zM8dOlW7iKwnw8QX+gaOd5HgIxCNoRckaYq4Ui2bBBJBAAAXeqVcbCEVzPI6QqtPomhXYby3M5Ekvgei7lTpeubeN6HrerZX61uU5cD1Dr9kiGgvzNV15DFoLgYL09Y4SHNyaAiKZzPJXmZqVCKhTcthbu65JINPo9era9LbhmwmFigQCVbhdD00gO6u83KmXKnQ5RPeAH3ZBB0zTRZJlEMEih3aL7ldcCWGs0+GhjDeHB5VKRxUSCI8nUgfcKP9pY9ydO8J8W3pmdO+B32JtRoN6F6ROTXPrFVdr1DpNHxx+6vBFNRXjzd89jWw6B0L3ZUVmRcBwXs2cSjod4+buntzXrAJrVNkEjQDhucPOzJRLZGIlcnMpW1R9PC90L1L1OH8f2bbBOf/vEA8+UGksydWyc1HicVr3DuXdPM/OA0UDwJzpe/9HLmD0LPahtC8SSJHHklQWOvLKw69dOH5+gWWnRqLQ4+urCvWx6q0Z6KoXZMymslIaBulZo0G12SU0kKW9WqZeaZKcPJ1DPxxNE9QD2QNq0ZZqosjQcU5OE4MLkFLOxOLKQUCWFltVnLh4H7mkyH0mmfYGlcJixcBjbdYfLIK7nsVSr0uybzMRiJIJBgqpKtdsdivr3bZsxI0zbslBkiVw4zLen53hzcoqWbdG2LBaTSdbqdaajMT5Yb3CzuoIuyxxNpciEDfAEEV2nafbpOzayJJEOGdiuR8YwKHc6lDp+M1GTZRzXI6brfJFvE1IUgqpCuevPXgcV5YHLLEIITqQz20x17xJQVN6cmmapVmU+rjN7n25ISFX57uw8HcvC0LRhechx/QxYHryWh98AvFWpUGy3iesBYrtMehTaLUKqxvcXFvloY53TmSxvTs8c+FLL3RuO53n0LOvhX3CAjAL1LmSn00R+5zyO5exbqW23CYnkeIKFc7OU1yscfWV+VxW7icUchZUilc0qs6cmsS2b0nqFRC6GFrj3eqX1Ml/87KpfejgxydFXdw+YdwnHDV7/0St0ml0iCWPf2aosywSNR18A0oP6DkNeWZFJTSQprpbwwL8Wm1Uc28G2HQqrZRrlFkYs+FSd4b86LvdVhBDbFid200xWJInJaJTfWDzCSt0XObobfAKKiodHrdcdlALgZ8tL1Po95uJxzmTHWKpV+Ty/RVBRWWvW+cH8AmeyY/x6fQ2B4HeOHWepVqPQbnEsnWY+kaDa7fHhxhpIfrNRlxUWk0nOZMfYbDYZMyJkjTDldpt3ZudQZRkPmIrGyLea3KpWWUwkmY0nKHTalDp+w1RDwlC1YeP01fEJpmMxCu0OW+0Gk9EIPzl2YluQbvT7LNeqBBSF+URy25TKXgHR1/jY/ffnrunv/RxLpWn0elR7PU5nc8MewPfm532FPk3b9caRC4dZrdfoIDg/Mcl3Zuf23Fj0PI96v4ckHixotRtnx8b4dHMDELw2/vX2YMRuusNPyvnz572PPvrowF/3eaXX8Tf/jFjIX5IxbeLZ2Lallo//5CJW3yZg6FTzNd76vTcOZE37ILFMa8dThWM7VPM1JFmiXmpy67M7CATljSq6odGstDn62jxv/Pi1p3Mmx+FXG2tUOh3Cms6b09M75noPgptlf055Pp6ga9tcKxVJDyRM35mdZ20gLxoP+I/w78zMcb1SZrPVRBaC1ycmdxWbv1YqcKNSJawqxALBoTt4rdflL5aXEMBqvc6r4+McSaYHwk87bzSNfo9iu0M0oOO5Hh+ur+IB6WBoWI/3gICsMBOPcSKdpWWa9GwLQ9X4xeoyjuvRd2yOp9JDUSSAtUad1UadTNBgMZl84kz2cVa8y53OcDzxQeYElwp5bg40Uc7kcsN+wX6xHAfgqbinCyE+9jzv/G6fG2XUzwCBkD7MKPcSNAonDNaub/rbeCEdWTkcJ4u9qJcaXPzzS9iWzdSxCY6+uoAQAlnxR//AF4u6u1V4+cPrfPt3X8exXTxvbw2LR6FnW9R6vYHwvZ8tVbpdSu0OuXCYQqtFvtVmdlCy2AvHdSl3O36mHQw9NGis1Gp8uL5KSFVpmxaqJJFvtzE0HQ9/EmQmFmetUR9oT/vbdlutJjkjTMvs8+nmBlOxGNlQeCi8tNFscK1cpmOa3K62OZZMs1yvoc3MkgkZvDExyR/euEbfsvhnly8xHo5wbmyMt2fmdiysRPXAtgzy+/OLmI5DqdPmk80NJiIRyt0u5yenSIdClDsdfrm6jAeokkzPtkkGA5Q6ba6XSxxLpZEliVqvy0cbG0Q0jS+aeUKaykTkwc5ID+NxAv1+RKT8WnyVjGFguy63KpVHDtRPI0Dvh1Gg/oaweG4OLaBi9mymj088NR3ox2XlyhqKqhBNRVi7vsnMyakd5YzMTJpbny4hhGDu9AzVQt2vc76x95blfunbNj9fWaZjWQjgrcGMsDYoB7RME8dz0WSJq6UiS7UaWcPgbG5sx2PyxfwWK/UawI7s8atsNZv80c1r5FttxsJhyt0O09E4XctktVHj3dn5YYD8/vwifcdGlxVuVf26q+O6VLtdbtXKxPJBMkaYv3LiJIlgkDvVKmFNQxESV0oljDENq+fLfGZCBqmQgSxJNPp92maftYbLQiJBsd1i9iGzyYamEXBd3lu+w6VCgY1Wg/FwdFgfzrdaKJKMpsh8uLaKKkkUOh3qvS65UJgxI8Ib09NYjuuvpmsa7cF698Oo93p8urWJKkmcyY3ty03mIJCE8C3QOh0cz2MmdrAqj0+TUaD+hvAkNliO42B2/Uz8aSn4BSNBCqtlPM9D1X1Lr68yd2qaaNLfvkzkYnQaXWRFeiS50r1omiYdyyZrhKl0OxTabZLBEIlgkPMTE6w3GiwkEmiyzLVSkVQoxEq9RioY2pZhW47DlWKRnGGgKwqrjcYDA/V6s0EqGKJlmqw1Gnj4ASCgKJS7bTqW5bt/DDb1dEXh061NVmo14oEAd2q++Wyh0yGXi7Bcr1DtdUkEgyQCQT7Pb9G0+uiyTLnbIaSqw1VxVZZJBkLc8MogBLqs0LUtQnuMjd0tc97NWOv9Hi5wMpNhpV4nPbheAIlggGtli8vFArKQOJ3JceXyl5zMZFAkmffXV7gwNUUiGCQTMii220Q0nbGHGPRajsMffHGRSqdLWFfpWBa/sfjkN+r9cn5ikuV6DVlIo0A94tnB7Jl8+mdf0ml0iKYinHv39CPpbe+XudPTIAS9Vo+Zk7uLRgkhts1x3z/+96SENRXPdfmL5Tv0bZup+x6/p6IxpqL+L+Vdj0FJSIAY6j5YjsOlQp5fbayzVm9wtVRkNh7jjYe4j6dDIW6Wy5iOQ1BVeGVsgq1Wk0vFPKfSOa6VSwgEhqYSUFUyIYNqt0ssEMDzPL7I51kcjAQu12ukQqHhKvtsPMaHG6t0TJOAopAJBnltcmpbjf2d2Tks1xlqPb8zO08mZOC4LpWuP2aYCgYpdzv8en0d8Hg5N85YJIImK6iShBEyCCgKx9P3NlHHI1HenpkDBp6cqkosEMB0XFxgfHCzUCSJb01NP7BZez/lrj91kguHqXa6FDuth/5sDxJdUTiWOvjt1qfNKFA/55Q3q7RrbX8MbqNCrVAf1ozBz7I8z9uWaVcLdS6/fw2AU28eJ/EAz0XHcdi6U8DsmUwu5nbol3xdBBSVRDDIuBEhGQqy0qhzIpPdoTiXDAY5kkxxp1ZlPBxmchDAV+p1blYrVLsdwrrKRDhKWNc4nXmwY8hMLM6nWxtMRKLEdB1DUzmaSuMBs7E4+XabD9dXSQSCuHi8PjnF0WSSz7Y26TsOubDBTCJBqddBlWR+cvT4cK64ZztEtQDNfp+OZXIxn2c6lmDmvieAeDDIj48eY6vVIqAow2z7Yn6LlVoVhOBkJstavU5gYBrw373/M85kx/jJsRO8MTnFcr3OkWSSyej22nLGMPjhwhE+3dqkZ1n8J6++xqViEVkIvj3tyxZ4nkep06Zv22QM46GBWpYkpqMxip02HcfiTHanScP92K6LLMQ3Tj/6oBkF6mccs2eCEI894aHqKq7j0mn6o2P3K851ml0+f+8y3VaPxbOzw23JKx9cR1FkEIIrH/hNv71YubLGrc989bytO0Uu/KVXnoq+934IqCrZsIGhatR7PUzH4Ua5RNe2OZZKEdV9SdHT2RynMtltv/yW66ApMlFdZ6vVQpIEx1Pph262+Z59CkeSBsV2h/dXV3lzmmEwUoTv8J0Nh6n3epTaHc6NjZEIhnA9l0a/z9VSke/NL3I2l9tmgRXWNFRJotztENMDZMMG9X5vxxk2Wy0+z28h8DPhc9kc7y3fodHrEw3qBGSFgKrQtWx+sboyWMtu8Ic3rvE3X3512xLLV4noOucnJmmbvl73qUxuuI0IvkXZJ5ubQwOFdx4wGgf+lMl35+ZZqdcYMyIcT++e3Xqex6VigdvVClFd543J6V1VBF8URoH6GWbt+gY3PrmNEIKX3j6xLRPeL6nxBMdeX2T50hrj81nCiXv14KVLK5hdk1g6ws2LS2Rm0kMhKM/zeJCVsud5WH2Lar5OOB4iGA5S3qxgmfahBepTmSwfb6zRMk1eHp/gVqXMcr2GLit80O3wg/nFbaao9zMbi5NvNbHCvgbHqXSWqX3WMOdjCT7c8B3Gz+XGaZsWIUVhNhYfroUX2q3BAod//e+uH0f1wLAscz8t06TcafPyuK9417X8JuRuExWr9TrxQJCAorDVajJmhFmt16n3+3TLFgk9yO+dPMWv19exHJdjaT/jb5u+lvRXa9f30+j3+fnKErbrElRUvjM7u630km+3CQ8aiZ9tbTARDnPiATV9IcS2Nfq9aPT73K5USBsGlW6HpVr1gb2C551RoH5GcV2Xm5/dIZaJYpsONz+981iBWghBt9Wj3zPZuJ33zUW/5VtYKaqvj22bDgKBJPm/qC+9dWJQ+vB46a2dG5Cu63Llwxvkl4pYfRPPg06jS3Y2jb6HZKzn+RKrTzOIhzWN787dWwRarlUxVI2gqg6XPfZ6NA+qKu/MzuN43iPZO1W7XW5Wy4QU1ZcjDQTo2zYX81tYrkO91+Ol7BjfnpkhrGk7pFTvNi8rvS5HkklkIci32tyolNEVGdfzOD8+SWCg97GbvkQuHOZKsYAQEplQCEWSCKkKWcOg0e8jCTAdl7dnZgnICu+t3EGTFd6dm6fW6/Kr9TVs1+XlsfEdN4Jy15+QyBphiu029V6fQPheoJ6IRLlWKnGtUiIbNLhcKpI2wk/sBi4NxKNNxxlM6zx7oapnW74bkKrtyzPzSXj2vvsRgB9gAyGddr2DYzs7Vs/3w13Z0g/+8BMmFrKkJ1MUlkucfOPYYERuml67T6fR4dS3jw23F6OpCN/67V3n7gFoVdts3SmQGk9QK9bJzaaZPDJBOGHsmpWZPZMvfnaFeqnJ5JExjp1fRAhBtVCnWW6SGLvnIHOQHEul+dXGGm3L5Egi9cBFCPCvubLL+R+0gOGbxEpDSc9ip01U14ceh9lwhLVmA1WSh0G63uvxeX4LWQgMVWOpUSWmB/jzpTsokoSE4EqpwHdm5+jbDk2z/8Ds/lgqTWywAp8LR1AkiTO5ca4WiySDIdqWxfurywRVlbemZ3gpl/Md6nWdny0vIQm/bPHZ1uZwxnu92eBKsYDnQc+yKHc6wzG8+5mKRnltfALH8ziSTFDudIdLIU9CRNd5OTfOzVqFuVjimZvQ6NkW7y0v07ctJEniOzNzT3XMcBSon1GEEJx55xS3P19G0RQWzjy6znNpvcKNT+4QjoW48v4NFs6ZLL48Nww6WkDj7DunHvl1ZVVGCOi1+9imQyQZeeAER36pSKPcJDkWZ+3GJmPzWTzP45M/uYiiKtz6fJk3fvzqQ+VkH5WMYfDD+UUcz9u3T+H92K7Lxa1NNltNJiNRzubuuaJ4nsdqvU6+3aLW7+F6HrmwwbtzC+iKwr+5cY0P1tYwBgsg92fpv95Yw/MGCxi1ColAEE2S6VoW0UCAiUiEm9Wyv8moBx5qCisJwXhk+/X/906epjDTYqPRYK3ZIGOEKXRa1Pv9be4pkhDcrlaodnsYmorjeVi2xU9v30aSBJIQTEaijEciZELGrhn9YjJJqdP2pVZDwQNzMJ+Jx7c1Tp8l6r3+oIEapthpU+52RoH6RcWIhjjz9uNr6lp9CyEJFs7OIqsyJy4cYf7s481if/Vcp986wfqNTeZnZhhf2H0ywrEd7ny5wu2LS7TqXT9r9hiskzeQZJl4NkZlq0qn2T3wQA2763bsl0K7xWqjTtYIs1yvMRGJkhvMCa81GnyyuYGuKChCcDyVYjwSHTa8fnPxKBnDoNrtcTSVGk5yeJ6H6TiENR3LsQmrOp4Hf7Z0m7CqEVQVqr0er41PcjKdIb4P89z78Qa6JposMxGJossKq82GryON2NasBL908fOVJcKaTkTXKLZb2I7LpWKBptmnbZr89rFjfOcBSnG6ovDWzCx9x9lzRO9GucTNQc35XG7sgf6P3wQMTUMI/4nKcV2i+3Sif1xGgfo5Jj2ZJBw3qBbqzJ+eZv7M7IFtNOZmMtscYHZj49YWy5dWCSfCFFbLtBsdjr++SCQR9rM1WVDeqhII6UQSz57JqEDgcc966/7qR7PfR1cUEsEgluugygrrzQZJy9fjUGWZC5PTWI7D5WKBny7dYTGRYDae4JWxCX6xuszNcompWAzHdTk/PklI0yh327w5NU1UDzxyMHNcl483N7hTq9IxTd6YmuZ4Ks3b0zNUej2yIWNH0A9rGsfTGX9ppdMGIei7DiFFodbvEtZU6j0/YD+oDitLEqE9avv1Xo/LpSKpYJCNRoNEIDD0WvymEtY0vjMz58uyBgIH9hSxF6NA/YywfmuT5UtrRJNhjr1+5EAEl/SgzvnfOofVt9EC6lPbStwLs2/53o+RIOMLOV75wZmhE40RM7jw41fpNruE4wZa4NGaMa7nYQ7WsZ/WjG0uHOZIIsl6s8mRZIp06N7NZDIaZalepdhuEVJVLua3/PV0x+HtmblhM22lXmepXiWuB7mY3yIRDDEe8b37QqpGTNf5d7dvoUgyqiwTkFWSwdBjCd5Xez1W6zXyzSb1fo/+si9zejyV3nMELxUKcTSZYqVeYy6eYMwI01JNskYY23OJB4IkggFkyXcqz7dbJEMhJh9Bz8PD87djB7XrpyEEdxjcdaz5OhgF6meATrPLtV/fIjrIPI146LHXxb+KLMvbNK2/TiYWchRXSlTzNSYWczsMDoJGYJsj+n7p2zb/381rfJEvEAsE+GsvnSVjHHxGLgnBbDyB5bpI+FKjd7PcWCDA9+cX6Nk2bdPik80NksEQxU6bptkfBmrLdZCRfAlS754DdkhVMR2HK6UCPcdmuVbD8zx+dPTYY7uSeJ7H9VKJmzXfkHdBS1LvbZ+73mo2WW82SIdCzMTiSIO58tPZe+UrQ9P44eIiV4olVEnw0tgYpuPwwfrqUKdEm57d9zU3bYdCp83nhQJHUkmmdxlH3I2uZdG1LaID950XmVGgfga4O7MsKzKS7NtaPQ8Ew0Fe/0uv4FgOqq4eWOa70Wzweb5AxjCodDr8YmWZv3Ly0ZuiD8NxXT5YW8X1XPq2g+26nB27t0kXUFQCikpQUQmpKoV2C1WSSQdDNPo9PtrYoGOauIPtvcVkkthAoOlIMoXlOtyslPjO9CxhXadn29uy9rvczUQfVgpp9PuMRSL0bJtKz9dcvt91pd7z9a2DispKvU5AUYc197vYrsv7aytUu11kIXFhappEMEi+1cLD89fI2zZtyyTDzrOuNxus1GukgyEWkylapsn/feUSlW6HY8kkhqZz91+353lcLhb4eGODsXCYd+bmhjPa9V6PX6wuY7seiWCAN6dm9hWsrUHmHlIP7t/bs8AoUD8DGNEQ82emWfpylUgi/I0yhn0YsiwfuNKfKsl4nkvXsvB4tLnnR8F2XXq2RTpk0JUsmmZ/17+nKwpvz8zSNE0MVSWoqry3dMdvGuo6HbPPDxePbgu0qixzNjdO27IotPypgfldFO82mg1+tb6G4/qehzMPUMUTAhLBEAuJJBvNBt+bXxhmvcV2i4tbeUrtNifTGfq2n62ajoMqScOg1uz3qXa7ZI0w1W6XjWaDRDBIPBAgqgUotlvoirrrJIp/c1onrGp82fRtxoqdDoqQ0GWV27UqL2Vyw59XodPmX1y9hC4p3KyWkWWJH8wvAnCz4k+9ZENhyp0OjX5vT2Pb+9//l6srmI7DVDTGK2Pjz02wHgXqZ4T5l2aZPTX9tdeRv4lMRKP81pFj/Gp9jSPJ1AMnEp4EXVFYTCS5Va0gCYmzub11P+53LOlYFp/n89TNHrOxOMlgcM+byUuZHFdFgaCqciK9c/Pu/dUVlmpVHM+j2Gnzn712AQ9YbzTo2hZT0dhw9HA6GqPa7VLqdDg/MTkcw1tr1PnfL35Grd+j0unQNPuczuTIN/3V8/tXtIOqgiJJVLod+o5DLBAYyKiavDY+gYtHUFF3nabpOw54Hoam0bFM+rY/BZIOhdAViVpf4lvT08MbVt+2MR2XsXAIu+PSGKzHW47D9UqZtXqdjUaT6WiU4D7MHpaqNQAyIYO1Rp0jydTXJqH6tBkF6meIUZDeH5IQvDE1/VBlu4PgVCbLXDyBMpAp3Q+3qmVykTCiBUvVKm9Nzexad7Zdl48312n0+wO3FYOxwTy063mUOx3WGw36joOhatR6Pbq2zWqjzuViAVWSWG3UeXd2Hlny6+CvTez0xbxVqWC5Dq7nYXsutV6XuXicy8UCWSNMqdPmi/wWR1Np4oEAb03PstqoEdECGKrKe8t3sF2XSq/LyVSGk5nMrtciGQiSC/sbjIamMx6JIEsSluPSNPscTaaGpgjg+yGeSKW5Vi4T0VTOj/lnNx2HkKJyfmKKYrvNXCK+L52PkKrSs21kYSIJCU1+fn6fRoF6xIgHIIR45PVg/1Ff5nQ2R7PfIxfZfRmoY5k0+n2yRphGv8dmqzkM1J9tbbJSr+F6Hh3LJKYHOJ7KDLPdqKZjaBqFdsuXWN3jJt82TSK6hu15LNeqRPUAM9GEb7AgBH3HZrleI99qsdlqcTKTIREIsFKvk2+t07JMPNcjbRgsVauEFf+G8YOFxR01c1mSuDA5TX8wx313nvr+uv79aLLMX33pLNVej5CiDHW0g6rKWDjMVrtFxghxep8aH/OJBPZA6GohkSSgqDT6fWrdLhFdH2ptfxMZBeoRQxzb4dpHNymulBhbyHH01YVRlv8YLCZTdC3fFuyV8UkCisKXhbyvGBeOcG6w4Ri4rwnpeB6nBnVfx3VZa9TJGWGius5SrcrxVJoTaV+2dTYW56ONdZpmn4lIlMAu2a3neby3vMSfL90hoMgEJMn3E9QUwGMqGiMRCHK7VsG0bbqWzeVSgU83N3gpmyOk+QJPG80GbcsiqurkImEyhkHT7GM5DposU+126dgWqWCQgKIiCfFIKne+S/r22rMkfJPaer+HJu+ub7LXa524T1O7ZZq8t7zk68x4Hu/Mzn1jg/UoUI8YUt6osH5zi/R4ktVrG6QnU9uE/l8k/PqpQ1jTHrkhpckyr95Xgii229ys+CNzy7UauYFBrSbLvDU9S7HdRpVlurbFtXKJMSOMEIIblTJBRUGTFSrdLldKBS5MTjMRifLunI7lOMQDgT1U73r82Z3bRHWNnu2Qb7f5zuwcl0sFeo6DoamkQiFm4nG+LBS4WizQt21UWWapXmM2FqPQadOzHdxB2WMyFqPR7zETixNSVa6VCvxydY2IppIIhvjO7Nwwy3Zcl3y7hed5Q/2RR0GWpIc2Dx9Gy+zj4g4FpRr93ihQj3gOEGKwjechEDwnDfNHptbr8v7qCqbjMh07qOkB/3oKAdy38BFUVWbicS5ubXKnVkUSgj+9dYOsEcFybBKBgL/1p2os12rMxZNMRaO7Nskc18XxPDRZ5kalQqHdYqPpy5NGNY3LxQKGpmGoKjcq5aFo/2IiSa3XpW/bJIIBZmMJxsNhxowwt/oVUiGDrGEwGYnw5vQsmVCIYrvNH9+6RbXfJRkIIUkSbdNEGwTCS8U8t6oVBIKpaIzzgxuX63nDbPygJjIsx2GpVsV0HObiiWGpKqYH0CSZQruFJMQ3NkjDKFCPuI/URILJY+MUVkrMnJwk/gBnl+eZO9UqkpDIGkHWGnWOJlNEnmB6IBUKsZhIsNyoMxOLkwvvrFmXe13igSCe51Fsd3h5bIJUKIjp+NnwtVKRtmUNsvHIjiDX6Pf5YG2Vnm1xLJVmq9Xi3bl5Lg4MBf7T1y7wF0t3yBghPA/uGr+7nscbU1OYjs2taoWZWIw3p/2s/aXcGP/s8hes1GqkQ2ESodAwgy922mRCIUzHodhpMxWNbqvlbzZbZEIGsvD1uO9qnHy4tkq93yMXjvDa+MRDHWH2w9VykdvVCoqQ2Wq3+N7cwrAE887sPI1+j7Cm77uE8iyyr0AthPgR8D8CMvBPPM/7b57qqUYcCrIsc/LCUU5eOHrYRzlUwprG8sCFXJGkJxYQkoTgTG6MM7m9bacW4wk+29rEdF3mEwlKnQ4eHi/nxmj0+pi2zbFUmrbpO33fnbqwXZdSp83lQgHXdUmHDK6XS8QDARzX5cLkNJPRKLPxOG/PznK5WCSqaUzHYvzp7ZvkWy1OZ3P87vGTO4J/VNf562df4WqxgOW6LCaTw2uRCRkENY2xcIQpKcq7s/PbrtN0NMb1SgkBzMYTCCHYbDWpDZqnm80GhViUbCj8xMG62u0R0QIEFYVip4113/UJqepjKSc+azw0UAshZOAfAb8BrAG/FkL8a8/zLj/tw434ZuF5Hp1GB0mRH2s1/FlhIZHEw29GzccTT6TAt1/GwhECaolOp8ORZIrZWJyAqpIOhehYNtcqRRQhEdF11EFA9DyPX2+sUWi1WW3UCMgqC4pMz3aYicbIhSOoksRkJEqt1yUdMvjJUT9ofrSxxs+Xl4noOiv1OhORCALBtXKRkKJyOptDVxQ0Webs2PiO82bDYd6ZmdvWSLyfxWSSoCpT6nRJh0K+O70k4Xj+ElGh3eLPl5aIBwK8lMnieh5hTX8scaMjySQfb6zTMvtf28/r62Y/39EF4KbnebcBhBD/FPjLwChQj9jGzU/vsHZtHYTg9FsnyE4/u27PrufxRX6L1UaDiUiEs7mxYcNLlqSv3an6UrHASq3GwkDb+VgqPZyGOJ5OE9Y1LMdlMhoZzmSbjkOp7Tt6BxWF9VaDUqfDpWKe66UiZ3Jj/M7xE1wq5LlTq+IBL+fGmI0nqA4cyiO6xnqjQaPf43q5jC4rrDca3KlVeWV8grl4gka/R7nTJf4VlbhEMEiCnXXf1XqNT7Y2uVoqMh4Os9Zo0M/ZzCeSnEj12Wy1EEIwFYnS6Pf5Z5e/5GgyjeO52wSt9stEJEpsPoDjuUSestzoYbGfZ45JYPW+j9cGfzZixBDLtFi9tkFiLEEoEmTlytqhnsd0HPKt1g5RoruUOm3u1Kokg0FW6jUK7dYTv6freXxZyPPHt274pYh9qsQV2y0+29pgrVHn4411+o6zbUpCliRmYnEWk8ltmasmyySCQbZaLTqWxdvTs/Qdm5CikgkbfLa5QbnT4U6tSiZkYDsO/+LKJT7aWGchkSSq65Q7HebiCf/zrosiSdypVlhvNriY3+LLQp6fLS9xtVTk56vLVLvdB34vnufxeSGPoWp4nkfTNInoOqVOB0kIjqczRHSNzWaTz/IbVLtdJCGRMQxUSaba7TzWtTc0bWhe/Dyyn4x6t+98x79AIcTfAv4WwMzMo7uRjPhmIysyoUiARqmJZdlMHdv5uPx14YsprVAdBOk3JqaGiyRfZb/BdD8U2i1uVsqkgiGuV0qkjdBD3VkAar0emVAYQ/Vr44uJ5L4mFIQQXJicptBqocoyMV3n1xtrdGwLqSehKjJBRSGuB9ho+YF3PpZgo9nEUFV+/8xZWqZF1jCI6DqLiSSf57ewPJdTmRyO61Jsd/DwG6KFdotmv//Aswkh0GUZy3XQJZlKp0Mx0GQiMkHLNOlaFuuNBm9MTvPZ1iaTEYUjwST5dpNqp0tE14ho+p4/rxeV/QTqNeD+Xd0pYOOrf8nzvH8M/GOA8+fPPx+CsyP2jSRJnP3uadZvbKLoCtOHKCzVtixq/T45I0yj32fjvo2/u6RDBplQiI83N5iJxUg94cwu3Av6d7PhB90DupbFF/kteo7NdDQ+nFJ4bXySl7J7a4p8FU2WmYrFaJkmf3jjGs2+ifBAV2Qyeoj3VpY4mc4Q1QNUOl2OpJI0+ya255ILR7j7TjfLZW5VKwQVlfPjU3QsE1mSOJPJ8UU+T7HdQpWkfd1ALkxOc6VYIBuJELFMVusNurbDrUqZhWQSAQRUhaPpFBcmpkiFQtysVPjC3KJnO3y4scZ3Z+d2GAG/yOwnUP8aOCqEmAfWgb8G/P5TPdWIbyShSJCjry48/C8+ZYKKgqEMNv5cjxO71Jstx6He73MinaFjmdypVbdttT0OWSNMWNX4YH2V2ViM+ANE5b8o5Cl2OgQUhavlIt8ZWFlFdf2xmmFXCgVfYCkQRJFlJiNRYoEAmqxwpVTktxaPElAVbpbLhHWNxcQ9hxXLcbhSKpIOhQZaGRIvj82gKzIBRSUZDNLs+w4v+5mgiOo6r45PkG+3mIpEeb+7St+2MTSdSqfD6UyOlUadY8k0Y2FfD+TuSnxU1+nZFn37yQ1ynyce+i/C8zxbCPG3gX+LP573v3qed+mpn2zEiMdElWW+PT1DfuC+ktlF49lyXSzXJTGYXe5Y1hO/r+O69F2HU+ksHdtiqV7j+B5NSX+ETEZXFDpdi6CqEn0CtxDTtRFCoEqChuMiCwnH9XCEi8AvSZxIZziaTCEJsa2WK0u+NknLNDFth/FIZJtzSdeysV0X+RHqv4okEdV16v0ejuPi4W9LHk2mOJLy/7ufjGFgqL5nY1wPfKOXU54G+7p1e573R8AfPeWzjBhxYARVlbkHaDcbqspcLM5yvYYqySwkEsNg9LgNKdNxsB2XpOEHmY5pAn6Drd7rcaNSpm1ZHEulOJXJ8uH6GrVel5dyueHI3eNyLJXmeqVMu29xNpfz18WLBSzX4fzE1HBS5Kszy33b5tOtTepmD4HgSDLFyfueLLaaTT5cXwPhEdUCvD0zu6+zCiF4Y3Ka5XqNhXgShEdI1ZiJxXf9+/5yyhxd2yakqi+8o8tXef4GDkeM2AdCCM7mxjiSTKFIEjcqZe5Uq8R0nQtTUzvmgvdDWNOYjcdZqddQZZmFRBLX8/h4Y52PN9codrq8Oj7Bxxvr/HDhCL+5eATXOxjjg4wR5vdOnKJjWSQHc8370elertcotNuMGxEK7faOOeTNVpOgqhDVAxTbbbq2te+biq+xvf9ykirLT3zDel4ZBeoRLyx3JUxrvS63KpWhtddSrbYjwLRNE9t1ier6nhm3EIJzuTGOpdKoA33oWs93SYloAUqd7lBy0/E8JCEe2x9xN+KB4GM14CzH5vP8Fvl2i7FImG/dp5+dDYdZrtfo2TaGqu1LwH/EwTMK1CNeeCQhIYRfN3ZwUaXtWd1Ws8lHm+u4rsdMPM653NgDg3VIVbFdF8/z0GTFb5YNtEK6ts2r4xMYz8ha82wszhf5LUqdDi9lcxTbbWq97lC5bjISRZ+Zo2/bpELBx854O5a/jXi3Z/C8zjs/LUaB+gXBdV3MnoUWUEca018hquucy41xq1JhLpZgJrZdjOpWtUJI9U1sV+s1TqZ3dziBe4att6oVYrrOy2MTqJLEF4UCJ9MZfrR4FOMZsIfKD3Q3cobBqwNxpHggSL3X21GKedRNwa9iOg4/X1mmb1vYnsfrE1NMRaNP9JovGqNA/QJg9i0+f+8SjXKLeDrK2e+eQlFHP/r7mY0nmN2j+RgPBLhRKdO1bEKq9sCactPsc7NaIRMyqHQ7fLi2SrXbQ5EEF/NbJIIh3p2bP9CSx6OSbzX55eoKmqxwtVhgIZEkqKiYrsPLY2NE9YPVaelaFn3bJmOEqfd6lAZqeweF53n0HRtVkg9Eje9ZZPTb+gJQ3apRLzZJTyQpbVSo5utkplIP/TrXdVm+skZ1q8b4Qo7x+f0vYjxPHE9nCCgqfdtmJh5/YDDwFb39MortehiKRLHTwfM8YnqAfKtJs9/fNv72tHBcl9vVCvV+n7l4YpgZN00TTVZIhUK8v7ZC3ewT03UmQzFm4wlapkm+1cJQVXLh8BOXKfz5aI18u4UAJgYyryu1GpeKBWK6zivjE4/kDHMX1/P4bGuTtUadoKry5tTMN1rOdC+ez9vPiG0omoLnenRbPfA8FG1/9+fiapmbny5h9SyuvH+dZvXJ9TC+iSiSxGIyyals9qFBIKLrvJwbx3FdZuNxLkxNMxOL0ej3SYZCRHR9X7KpbdPkV+trfLC24pvfeh5928Z7hJX35bofCCvdLh+srdAdzIpnDQMh/JV303aYjcZJBw0K7RZ92+YXK8tcLhV4f32V9WZz3++3F4ok8eb0LN+anObduXmy4TBdy+JifpOwplHtdblRLj/Wazf7fdYadTIhA9N2WKnVnvi8zyKjjPoFIDkW5/jri5TWK0wfnyCe2d9jp9k3kWVBwAjQqrWxTfspn/T5YCYeZyYeH37828eOczqTpWH2mY3tz1H74tYm9X4fWRL8cnWZiKZT7nbIGWFem5jc10hfxzLRZYWorlNoW74JrqoS1QO8O7dAx7KYi8e5U/WV9Y6n0nRtC9O5V6aodjsHUqbQZJlceKfuibjPVehxUCQJgd+stFyHwHNa0ns+v6sR2xBCMH18kunjjyZ6mJ1Os3EzT3mzSmY6TTQ9Esp5HGRJ2rGJ9zA6tr+tqEiC25UKXd1mPBJhq9Wk3OnsGvS+ykwszlqjQaHdYjwc2eZSc1dQPxUMMhmJIQQkAkGcQYnmrn3VeOTpNP2CqspLuTEuFwtEAzpHH1NW1tA0LkxOcataYSISYXaPhZpvOuJRHqX2y/nz572PPvrowF93xNeP67pYfQst8Ogmry8KtuvSNk0CinJgovX5VpOPNzdwXY/xcISVZp1EIECt1+M7M3Mkg75N18O8B03HwXQcDFXd98/PchyK7TY92yZthA68uThid4QQH3ued363z40y6hEPRJIk9ODhj5M9q9iuy/trK1S7XVRZ5u3p2UfyV7Qch3K3gyxJpIOhYTDNhSP8xsIRwM/IjbJGvtXibG4MQ1X52fIStX6P8XBkOF63G5osP7KVmBCCm5UytX4Prwjfmpza1edxxNfHqJk4YsQTUOv1qHa7ZI0wruux0dp/88230lrng/VVfr6yzJ1addvn765USwNBpe/OzbOQSLLVbg29BzeaDSq9B4v5Pyody6Te75E1fOeYjQNoKI54MkaBesSIJyCoKAig3uthug6RRxgNMx2HcqfNmBEhEQiw1mjs6+vu9x4EUMTB/hoHFJWgqlJst2ib1oFodY94MkaljxEjngBD0/j29CzrzQZxPcD4I5QINFkmGQyx1WqCB6ez2X193XgkyolUn2K7zclMlqV6jU/zmxxLpg9sQuPb07O+TKyikjV2ysSO+HoZZdQjRjwhqVCIs7kxZuLxR2q4CiE4nckSUX337elo7OFfBEhCcDKT5Z25eVzPY6VWQ0Lw6eY67YG06pMSUlVmojEMTcN5CgMHIx6NUaAeMeKQ8DyPT7Y26bs2tV6PL4uFR34N2/WNcDVZxvU4sKDat21+vrLEn925xc+Wl+jboxn6w2QUqEeMOAS6lsVnW5tcKmwRUBQiuk5jD8f0B7GQSBFSVcqdDkeTqUeqkT+IcrdDbdBQrPf7lB7THXzEwTCqUY94IfE8D8t1USXpUObDP93coNrrElA1Plpf52Qmw6sTj7aQBH6J4t25eZwDMiC4iy4reB60zD7gocujUHGYjK7+iBcOy3H49cY6pU6brGFwfmLqa7d+apomET3AyUCQQqvFDxeOPJYoEfi1buWAbzapUIjzE5NstlocS6YfKHXat20kIUbuLE+RUaAe8cJR6LQptFuMhSNstZsU223GI1/vQsfJdIaL+U0AXpl4POW4p81UNMbUQxqcN8tlLpcKKJLE6xOTZIyHr7aPeHRGgXrEC4ciJPCgZ9t4LodipDoTj5MNG3gehx6k3UED8lE1si3H4UqpSCoYou/YXCkWR4H6KTEK1CNeOLKGwclsls1mk5ey2Sd2MHlcHsdA96Apddr8en0d1/N4ZXyciUcQYZIlCV2WaVsmpu0w9jU/lbxIjAL1iBcOIQTHU2mOP6Zi2/PE5/ktdEVBkSQ+3dpkPBzZd3NVEoI3pqa5Vi6hyTInH8FxfMSjMQrUI0a8wGiyTNu0cD0P9TFW0WOBABcmp57CyUbcz2iOesSIF5hzuXEimoYmS7w+OTWSsn1GGWXUI0a8wER0nW/PzB72MUY8hFFGPWLEiBHPOKNAPWLEiBHPOKNAPWLEiBHPOKNAPWLEiBHPOKNAPWLEiBHPOKNAPWLEiBHPOKNAPWLEiBHPOMJ7CjY7QogisHzgL7w3aaD0Nb7fs8zoWtxjdC3uMboW93hWr8Ws53m77uE/lUD9dSOE+MjzvPOHfY5ngdG1uMfoWtxjdC3u8U28FqPSx4gRI0Y844wC9YgRI0Y84zwvgfofH/YBniFG1+Ieo2txj9G1uMc37lo8FzXqESNGjHieeV4y6hEjRox4bnnuArUQ4u8JITwhxAtr3yGE+G+FEFeFEJ8LIf6FECJ+2Gf6OhFC/EgIcU0IcVMI8V8d9nkOCyHEtBDip0KIK0KIS0KIv3PYZzpshBCyEOJTIcT/e9hneRSeq0AthJgGfgNYOeyzHDJ/Arzked5Z4DrwXx/yeb42hBAy8I+AvwScAv4DIcSpwz3VoWED/4XneSeBbwH/+Qt8Le7yd4Arh32IR+W5CtTAfw/8l8ALXXj3PO+PPc+zBx9+ALxIXkkXgJue5932PM8E/inwlw/5TIeC53mbnud9Mvj/Jn6AmjzcUx0eQogp4CfAPznsszwqz02gFkL8LrDued7Fwz7LM8Z/DPybwz7E18gksHrfx2u8wMHpLkKIOeAV4MNDPsph8j/gJ3LuIZ/jkflGWXEJIf4UGNvlU/8A+PvAb369Jzo8HnQtPM/7V4O/8w/wH3//4Os82yGzm+nfC/2EJYQIA/8c+Lue5zUO+zyHgRDit4GC53kfCyHePeTjPDLfqEDted4Pd/tzIcQZYB64ODDnnAI+EUJc8Dxv62s84tfGXtfiLkKI/wj4beAH3os1g7kGTN/38RSwcUhnOXSEECp+kP4Dz/P+n8M+zyHyFvC7QogfAwEgKoT43z3P+w8P+Vz74rmcoxZCLAHnPc97FoVXnjpCiB8B/xD4rud5xcM+z9eJEELBb6D+AFgHfg38vud5lw71YIeA8LOW/w2oeJ73dw/5OM8Mg4z673me99uHfJR989zUqEds438CIsCfCCE+E0L8z4d9oK+LQRP1bwP/Fr959n+9iEF6wFvAXwe+P/h38NkgoxzxDeO5zKhHjBgx4nlilFGPGDFixDPOKFCPGDFixDPOKFCPGDFixDPOKFCPGDFixDPOKFCPGDFixDPOKFCPGDFixDPOKFCPGDFixDPOKFCPGDFixDPO/w8oamuiO0LonAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(X[::1000, 0], X[::1000, 1], marker='.', c=km.labels_[::1000],\n", " cmap='viridis', alpha=0.25);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For all the estimators implemented in Dask-ML, see the [API documentation](https://ml.dask.org/modules/api.html#)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" } }, "nbformat": 4, "nbformat_minor": 2 }